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What is Bayesian optimization (BayesOpt)?

BayesOpt as an abstraction of intelligent decision
making systems that collect data to gain knowledge

e BayesOpt as global optimization: how to use ML to help optimization.
e BayesOptin AutoML: how to use ML to automate ML.

e BayesOpt for experimental design: how use ML to design experiments.
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[Wang, PhD Thesis 2020]

Data collection in Al / ML systems
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required data e middle ground: learning with Bayesian priors
for learning

expert knowledge



[Wang, PhD Thesis 2020]
[Wang*&Garrett*&Kaelbling&Lozano-Perez, IJRR 2020]

Robot learning as “BayesOpt” with strong priors

Figure 2. Examples of a real-world robot executing a trained
pouring primitive in KitchenPR2 for several contexts parameter
values (cup dimensions) and control parameters values (relative

cup poses).

Strong priors / built-in knowledge: modularity, robust planning algorithms...
Learning: choose which data points to collect and incorporate into the posterior.


http://www.youtube.com/watch?v=X00tNISSnvY

[Wang, PhD Thesis 2020]
[Wang*&Garrett*&Kaelbling&Lozano-Perez, IJRR 2020]

Robot learning as “BayesOpt” with strong priors



http://www.youtube.com/watch?v=nBDUb_czGww

* from the point of view of this talk

BayesOpt is not “black-box function optimization™

Start with a model Outpot
LOOP |

choose new query point(s) to evaluate

[nput
update model

What is the initial model (a.k.a. prior)?




* from the point of view of this talk

BayesOpt and its initial model (a.k.a. prior)

e BayesOpt aims to optimize an expensive function with as few queries as possible.

e Priors are encoded by experts who have intuitions and past experience about the
expensive function, e.g. wiggliness, smoothness, differentiability, etc.

e When such intuitions are lacking (e.g. hyperparameter optimization of deep learning

models), BayesOpt typically needs more data.

Is it possible to reduce both data and

required data expert knowledge requirements?
for learning

few queried_—"|
data points s
expert knowledge




How to reduce data & expertise requirements?

TL;DR: pre-training, a.k.a. meta learning, learning to learn, prior learning
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° ‘ Improving the prior model from increased expert knowledge on this type of functions.

° ‘ Pre-training the prior on data from past experience with this type of functions.



Concepts: pre-training, prior learning and more

e Prior learning: “learning the prior” with “point sets”, a set of iid sets of
potentially non-iid points. [Baxter, 1996; Minka&Picard, 19971

e Pre-training: a more procedural and less Bayesian perspective of prior
learning; i.e. emphasizing that prior learning happens before training
on a new task.

e Meta learning: roughly, a frequentist way of calling prior learning.

e Learning to learn: an interpretation of meta learning (or vice versa)

[Schmidhuber, 1995].
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Pre-training a Gaussian process (GP)

What is pre-training in
BayesOpt?

[Wang et al., 2018; Wang et al., 2022]

Google Research
10



Pre-train and fine-tune for deep learning models

Pre-train

Train the model on a very large
dataset, e.g. ImageNet-21K, with
a cross entropy loss.

e Save the (pre-)trained model.
Fine-tune

e Restore the pre-trained model.

e Continue training the entire
model or part of the model (e.g.
last-layer weights) on a relatively
small dataset, e.g. CIFAR-100.

e Now you have the fine-tuned

model specific to the new task.

Vision Transformer (ViT) Transformer Encoder

Class [Dosovitskiy et al., 2021]
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How pre-training lifted deep learning

(Supervised) pre-training on ImageNet and fine-tuning on ImageNet
competition datasets led to one of the initial breakthroughs of deep
learning. [Krizhevsky et al., 2012; Sermanet et al., 2014]

“supervised pre-training on a large auxiliary dataset (ILSVRC), followed
by domain-specific fine-tuning on a small dataset (PASCAL), is an
effective paradigm for learning high-capacity CNNs when data is

scarce. ” [Girshick et al., 2014]
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Gaussian processes (GPs) in BayesOpt

Samples from the prior Samples from the posterior

Given observations D, = {(z,,y,)}Z%, predict posterior mean
and variance in closed form via conditional Gaussian

pe—1(x) = ki1 (2) " (Kyo1 + 0*1) "ty g
or-1(2)” = k(z,x) — ki1 (2) (K1 + 0°1) " k1 ()



Pre-train a GP on data from a range of tasks

Task 1 (x 11,y 1) (x 12,y 12) | ...... (x 1M,y _1M)
Task 2 (x_ 21,y _21) (x 22,y 22) | ...... (x_2M,y 2M)
Task N (x_N1,y _N1) (x_ N2,y N2) | ...... (x_NM, y NM)
New Task ? ? ?

e Each task corresponds to a function.
e Different observations may occur on different functions.

e Set the pre-trained GP as the prior for the new task.



Pre-training in BayesOpt is pre-training a GP

Given observations on many
functions (colored lines), train
the GP before BayesOpt on a
new function.

Goal: train the GP model by
optimizing how good observed

functions fit the model.

~ -




Pre-training a Gaussian process (GP)

How?

Google Research
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Pre-train a “multi-task” GP via hierarchical Bayes

Kernel
All functions are IID samples from a GP :
 Jo' @ a:y)
e Draw parameter 6 from p(6; ). 3
e Draw mean function p and kernel function & from p(u, k | 0). _
e For each outer iteration ¢ from 1 to IV, Q (Z)
y]
— Draw a function f; from GP(u, k). 0 L f
— For each inner loop iteration from 1 to M, v M;
* Given input xgi), we draw the observation yj(-i) ~ N( fi(xg.i)), o2, Mean function \\\
One task

Instead of learning correlations among tasks, we

learn the GP that generated all tasks.




[Baxter, 1996; Minka&Picard, 1997]

Pre-train on “a set of iid sets of potentially non-iid points”
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. . . R ~ 4 Pre-training N 4 BayesOpt N
e Pre-train: train a mean function 1 and kernel k to i) i) £/ ke) — ) ) % 3y/lto)

best fit data on i.i.d. functions f; ~ GP(u, k). Pre-trained model

e “Fine-tune”: solve max;cx f(x) via BayesOpt with k] /—\\///

an initial model gp(/l; k) New observations
& p” J K T j




[Baxter, 1996; Minka&Picard, 1997]

Pre-train on “a set of iid sets of potentially non-iid points”

Dy,

(]

Dy = {Dfi}iv=1

— ju(z)

BayesOpt

fulz) £3
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1 L 1 1 1

Task f, (21", 91") (25", 95" (=5 vir))

Task f, (21, y") (23, 4) (%52 Yag,)
N N N N N N

Task fv (2t 91") (", 4™) (2510 Yoty

New task f ? ? ? ? ?
) ) ] . ~ 4 Pre-training N (
e Pre-train: train a mean function [t and kernel k to i) jte) :34/kto)

GP(u, k).

e “Fine-tune”: solve max;cx f(x) via BayesOpt with
an initial model GP (i, k).

best fit data on i.i.d. functions f; ~

Pre-trained model
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[Baxter, 1996; Minka&Picard, 1997]

Pre-train on “a set of iid sets of potentially non-iid points”

Dy,

(]

Dy = {Dfi}ﬁv=1

ds 1 1 1 1
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e Pre-train: train a mean function (t and kernel k to i) jte) :34/kto)

Dy = {sz' i]\;l

best fit dataset

e “Fine-tune”: solve max;cx f(x) via BayesOpt with
an initial model GP (i, k).
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HyperBO: BayesOpt with pre-trained GP hyperparameters

Algorithm 1 HyperBO with acquisition function ().

1: function HYPERBO ( f, DN) Pre-train with empirical KL divergence

Ep(ﬂ, k) < PRE-TRAIN(DN)\

Pre-train with negative log likelihood

Df<—®

2
3
4: fort=1,---,T do
5

Xy ¢— arg max o (:c; QP(,&,I% | Df))
reX
Y < OBSERVE( f(x¢))

6:
7: Df (—DfU{(ZUt,yt)}
8 end for

9: return D¢
10: end function




Pre-train with empirical KL divergence

Task fi (21 y%l) (@5 y](-l) (2 ?/5\?
Task fx (21 y%N)) P e (Cﬂj,yj(-N)) (T, yj(\];))
v w@) ] [knan) - k(aneu)
Vi=1,---,N, L ~N S : : + Io?
yz((}) w(zar) k(xar,z1) - k(zm, o)

i.i.d. samples from the same multivariate Gaussian



Pre-train with empirical KL divergence

Task fi (21 y%l) (@5 y](-l) (2 ?/5\?
Task fx (21 y%N)) P e (Cﬂj,yj(-N)) (T, yj(\];))
- (N)T
i g S p=yyly € RM
y=| : . i | eRTT
S0 K = y(y— aly)(y — ply)" € RMM
L Yng M A

(Empirical Bayes)



Pre-train with empirical KL divergence

Task f; (21 yﬁl) (2 yj(-l) (2 yj(\?

Task f; (21 ygi) e (z; y](-i) e (xp y](&)
N N N

Task fN (xlvyg )) (xj7yj( )) (vayj(M))

I_,Lc(xl)-‘ k(xl :El) k’(xl,l'M)
(Our model)  p= { : J K = : +1Io?
p(zar) k;(xM xl) kT(ZL’M,l’M)
Do, (N K).N (. K)) = & (tr(K*K) (@)K (g i) +In : : - M)

ZiWang / 24



Pre-train with negative log likelihood (NLL)

Task f; (xgl),y§1)) (I(l) yj( )) (xgvlf)lvygvlf)l)
Task f, (2, ) (2,4 (41, o) fi~GP(u, k)
Task fy (@™, y) (2,5 COVARY V)

L(p, k,0%) = —logp(Dy | p, k, 02)

log p(Dy, | p, k,0?)

-3
—zzl( (v

— (= ("))) K7 (y = p()) +

2

1 M;
—log | K| + TZlog27r>



Besides success in deep learning,

Pre-training helps Bayesian
optimization too

Google Research
26



[Wang et al., 2018]

Near-zero regret with an unknown GP prior

Theorem 2. Let N > 4log g + T + 2. With probability at least 1 — 0, simple
regret in T’ iterations of HyperBO with special cases of either GP-UCB or Pl
satisfies
Rr <O + (log 2)} | O(pr/T + o) (1)
J & N_T 0og 5 PT o),
h = slog|I + o~ 2k(A).
where pr = | max_Hlog|I + 0~ 2k(A)|

e Linear dependency on observation noise as a result of choosing the best observation.

e Pre-training on more tasks leads to better pre-trained model which leads to smaller regret.

e The dependency onT is complicated. More BO iterations push the “posterior” GP away from
the ground truth posterior. But we also gain more information by observing more.

e Note that this result only applies to the KL objective and finite search space. ZiWang /27



Improved time and memory complexity

Time Memory
Overhead O(M?N) O(M?)
T.oss Fanetion O(M?3) O(M?) e K:number of optimization
KL \ ) steps (or epochs in
GD O(M°K) O(M7) stochastic optimization).
2 2
Gl OB*MK) O(B) e B: mini-batch size of SGD
Loss function ~ O(M3N) O(M?) over data points per task.
ST Parallel O(M?) O(M?N) e Typical multi-task GP or
GD O(M3NK) O(M?) contextual GP: O(M"3 N*3)
SGD O(B*MNK) O(B?) Potoeso ot ol 2014 Yogatams st Man, 2014]




New benchmark for tuning near-SOTA DL models

Available at https://github.com/google-research/hyperbo

The PD1 Neural Net Tuning Dataset based on open-sourced models from [Gilmer et al., 2021] https://github.com/google/init2winit

~12,000 machine-days of computation for 50,000 hyperparameter evaluations

Task Dataset Model Batch Sizes
CIFARI10 Wide ResNet {256, 2048}
CIFAR100 Wide ResNet {256, 2048}
Fashion MNIST Max pool CNN ReLU {256, 2048}
Fashion MNIST Max pool CNN tanh {256, 2048}
Fashion MNIST Simple CNN {256, 2048}
ImageNet ResNet50 {512, 1024, 2048}
LMIB Transformer {2048}
MNIST Max pool CNN relu {256, 2048}
MNIST Max pool CNN tanh {256, 2048}
MNIST Simple CNN {256, 2048}
SVHN (no extra) Wide ResNet {256, 1024}
WMT15 German-English xformer {64}

uniref50 Transformer {128}


https://github.com/google-research/hyperbo

3x speed up than the best competing methods

HyperBO
—— Rand —— STBO —— STBOH —— MIMO RFGP MAF | — H*NLL — H*KL|
o BO Iters = 100
(@) \ (b) (c)
0.8 0.0175
10-1 0.0150
g
L£06 o 0.0125
g 5
s T 0.0100
5 04 5 10"
E g 0.0075
02 € 0.0050
0.0025
0.0 N 0.0000
0 20 40 60 80 w0 9% 20 40 60 80 100 ;@ 'OQ\ o S o
BO Iters needed to outperform median best error rate at the 100th iter. BO Iters L é,\% @Q\ x\\ X
e | H*NLL/KL: HyperBO jwith Pl and 1-hidden NN mean function and Matern32 kernel on the same NN.
e  STBO: Single task off-the-shelf BayesOpt with type Il maximum likelihood (other settings are the same as HyperBO).
®  MIMO /RFGP: Contextual BO with ensemble based Bayesian NN [Havasi et al, 202010r random feature GP.
® MAF: Meta-learning acquisition functions for transfer learning in Bayesian optimization (volpp et al. 2020].
e  STBOH: Single task GP-UCB with hand-tuned priors on hyperparameters including UCB coefficient.

ZiWang /30



Robust performance with fewer training
tasks or training data
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Better performance on individual tasks
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Better NLLs lead to better BayesOpt

NLL of the test task only NLL of all tasks (Pseudo) KL
Test task No training  Single task H* NLL Single task H*NLL | Singletask H*NLL
WMT XFormer 64 —301.1 159.1 —1735.0 1147900.5 2264.5 9651.9 —40.2
Uniref50 Transformer 128 —651.7 —6829.4 —1850.0 | 106348128.0 867.9 316672.2 —25.1
LM1B Transformer 2048 —540.6 —2009.7 —1692.7 18840458.0 3565.7 57744.1 —23.5
SVHN WRN 1024 9703.1 72407.5 4267.1 3399330.0 9346.5 4677.9 —0.9
SVHN WRN 256 10770.0 53245.5 3794.8 1164804.5 9346.5 3092.7 —0.9
ImageNet ResNet50 256 1196.7 7483.0 —746.3 7925583.5 —74.2 15028.1 —30.6
ImageNet ResNet50 512 1300.2 6930.3 —673.1 1778823.5 —74.2 9462.1 —30.6
MNIST CNNPoolTanh 2048 10079.7 38871.9 794.8 1375930.1 97.0 3165.5 —32.4
MNIST CNNPoolTanh 256 12147.7 25607.9 550.0 556254.6 —606.0 1255.1 —41.9
MNIST CNNPoolReLU 2048 26870.5 7149.3 5506.6 46538.2 1542.2 113.8 —59.4
MNIST CNNPoolReLU 256 15601.6 6734.6 51.0 88687.7 —782.2 361.2 —41.5
MNIST CNNReLU 2048 13939.2 40619.2 3153.2 743233.1 —231.4 877.6 —61.7
MNIST CNNReLU 256 10111.0 344124 1365.3 977295.0 —779.8 1373.3 —46.2
Fashion CNNPoolTanh 2048 2072.8 11433.0 —381.0 1139702.4 —1051.7 1910.5 —37.8
Fashion CNNPoolTanh 256 2800.7 4115.6 —251.4 1278018.0 —1051.7 4208.3 —37.8
Fashion CNNPoolReLU 2048 4677.4 725.2 —405.2 69173.3 —1051.7 205.1 —37.8
Fashion CNNPoolReLU 256 3925.7 4254.4 —755.7 296739.1 —1051.7 1027.1 —37.8
Fashion CNNReLU 2048 4667.3 6778.1 251.9 193488.4 —1051.7 597.0 —37.8
Fashion CNNReLU 256 3295.1 29348.6 —235.1 1526829.2 —1051.7 33414  —37.8
CIFAR100 WRN 2048 1271.5 15813.7 —467.4 3306556.5 312.3 25593.7 —19.2
CIFAR100 WRN 256 1957.6 5950.8 —510.9 3468309.0 11.7 9288.4 —25.9
CIFAR10 WRN 2048 5220.6 4917.6 832.9 334488.8 1127.1 1040.4 —14.8
CIFAR10 WRN 256 7819.1 32995.8 463.4 895691.2 847.4 1946.0 —19.6

HyperBO pre-trains on 18
irrelevant tasks.

Both HyperBO and STBO trains
on 100 randomly selected data
points of the test task.

NLL on all tasks without training
=148211.2

KL without training = 2177.2
STBO causes severe overfitting.

HyperBO consistently obtains
better NLL on test task, all
tasks and KL on matching data.
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Sensitivity to acquisition functions
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BO Iters needed to outperform median best error rate at the 100th iter

Pl and El achieve similar performance.

0 20 40 60 100
BO lIters needed to outperform median best error rate at the 100th iter

UCB's performance varies depending on its trade-off hyperparameter.
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HyperBO with different objective functions
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e KL always performs better than or similar to NLL.

e NLL+KL may have a slight advantage over NLL on El but the trend gets reversed on PI.

e  Overall the three objectives are much better than the best competing alternatives.

HyperBO
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Which objective to use in HyperBO?

e Both KL and NLL works in a continuous search space.

e KL assumes same inputs across tasks.

e NLL is a more flexible objective that does not assume same inputs across tasks.

e KL can be easier to interpret: number of extra bits (or nats) to encode a multivariate

Gaussian, which approaches 0 as the difference reduces.
e KL on adataset # NLL on the same dataset. NLL cannot use the matching inputs the same

way as KL due to “anonymization” in mean and kernel.
e So, KL if large set of observations on same inputs across tasks. If no same input, use NLL.
e If the number of same inputs is not as large, one may use NLL with KL as regularizer but

weights probably need to be tuned.

ZiWang /36



Open sourced HyperBO code and PD1 tuning dataset

e Code: github.com/google-research/hyperbo

e Data: storage.googleapis.com/gresearch/pint/pdi.tar.qz

Please let us know if you have any questions or encounter any issues by

posting to github.com/google-research/hyperbol/issues.

ZiWang / 37
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