Optimization as Estimation with Gaussian Processes in Bandit Settings

Zi Wang, Bolei Zhou, Stefanie Jegelka

ziw, bzhou, stefje@csail.mit.edu

May 9, 2016
Black-box function optimization in the bandit setting

maximize $f(x)$

$f(x)$ is expensive to evaluate.

Sequential queries.

At round t,

Choose x_t; Observe $y_t = f(x_t) + \epsilon$, where $\epsilon \sim N(0,\sigma^2)$;

Goal: Minimize cumulative regret $R_T = \sum_{t=1}^{T} (\max_{x \in X} f(x) - f(x_t))$.
Black-box function optimization in the bandit setting

\[
\begin{align*}
\text{maximize} & \quad f(x) \\
\text{subject to} & \quad x \in \mathcal{X}
\end{align*}
\]

- \(f \) is expensive to evaluate.

\[
\begin{align*}
\text{Goal:} & \quad \text{Minimize cumulative regret} \\
& \quad R_T = \sum_{t=1}^{T} (\max_{x \in \mathcal{X}} f(x) - f(x_t))
\end{align*}
\]
Black-box function optimization in the bandit setting

\[
\text{maximize } \quad f(x) \\
\text{subject to } \quad x \in X
\]

- \(f \) is expensive to evaluate.
- Sequential queries.

\[f(x) = f(x_t) + \epsilon, \quad \epsilon \sim N(0, \sigma^2) \]

Goal: Minimize cumulative regret

\[R_T = \sum_{t=1}^{T} \left(\max_{x \in X} f(x) - f(x_t) \right) \]
Black-box function optimization in the bandit setting

\[
\text{maximize } \begin{array}{c}
\sum_{x \in X} f(x) \\
\end{array}
\]

- \(f\) is expensive to evaluate.
- Sequential queries.

At round \(t\),
Black-box function optimization in the bandit setting

\[
\text{maximize } \quad f(x) \\
\text{subject to } \quad x \in X
\]

- \(f\) is expensive to evaluate.
- Sequential queries.

At round \(t\),
- Choose \(x_t\);

\[
f(x) = y_t = f(x_t) + \epsilon, \quad \epsilon \sim N(0, \sigma^2)
\]

Goal: Minimize cumulative regret
\[
R_T = \sum_{t=1}^T (\max_{x \in X} f(x) - f(x_t))
\]
Black-box function optimization in the bandit setting

$$\text{maximize } f(x)$$

- f is expensive to evaluate.
- Sequential queries.

At round t,
- Choose x_t;
- Observe $y_t = f(x_t) + \epsilon$, where $\epsilon \sim \mathcal{N}(0, \sigma^2)$;
Black-box function optimization in the bandit setting

\[
\text{maximize } \quad f(x) \\
\text{subject to } \quad x \in \mathcal{X}
\]

- \(f \) is expensive to evaluate.
- Sequential queries.

At round \(t \),
- Choose \(x_t \);
- Observe \(y_t = f(x_t) + \epsilon \), where \(\epsilon \sim \mathcal{N}(0, \sigma^2) \);

Goal: Minimize cumulative regret \(R_T = \sum_{t=1}^{T} (\max_{x \in \mathcal{X}} f(x) - f(x_t)) \)
Gaussian process optimization

Assume \(f \sim GP(\mu, k) \).
Gaussian process optimization

Assume $f \sim GP(\mu, k)$.

At round t,
- Predict $\mu_{t-1}(x)$ and $\sigma_{t-1}^2(x)$
Assume \(f \sim GP(\mu, k) \).

At round \(t \),

- Predict \(\mu_{t-1}(x) \) and \(\sigma^2_{t-1}(x) \)
- Pick an input \(x_t \)

Examples:
- \(\text{PI}\) (Kushner, 1964)
- \(\text{EI}\) (Mo˘ckus, 1974)
- \(\text{UCB}\) (Srinivas et al., 2010)
Gaussian process optimization

Assume \(f \sim GP(\mu, k) \).

At round \(t \),
- Predict \(\mu_{t-1}(x) \) and \(\sigma^2_{t-1}(x) \)
- Pick an input \(x_t \)

Examples:
- \(\text{PI}(x) = \Pr[f(x) > \theta_t] \) (Kushner, 1964)
- \(\text{EI}(x) = \mathbb{E}[f(x) - \theta_t + \mathbb{E}[f(x)]] \) (Mo˘ckus, 1974)
- \(\text{UCB}(x) = \mu_{t-1}(x) + \lambda_t \sigma_{t-1}(x) \) (Srinivas et al., 2010)
Gaussian process optimization

Assume $f \sim GP(\mu, k)$.

At round t,
- Predict $\mu_{t-1}(x)$ and $\sigma^2_{t-1}(x)$
- Pick an input x_t by optimizing an acquisition function

Examples:
- PI(x) = $P_r[f(x) > \theta_t]$ (Kushner, 1964)
- EI(x) = $E[(f(x) - \theta_t)^+]$ (Mockus, 1974)
- UCB(x) = $\mu_{t-1}(x) + \lambda_t \sigma_{t-1}(x)$ (Srinivas et al., 2010)
Gaussian process optimization

Assume \(f \sim GP(\mu, k) \).

At round \(t \),
- Predict \(\mu_{t-1}(x) \) and \(\sigma^2_{t-1}(x) \)
- Pick an input \(x_t \) by optimizing an acquisition function

Examples:

\[
\begin{align*}
\text{PI}(x) &= \Pr[f(x) > \theta_t] \quad \text{(Kushner, 1964)} \nonumber \\
\text{EI}(x) &= \mathbb{E}[(f(x) - \theta_t)^+] \quad \text{(Möckus, 1974)} \nonumber \\
\text{UCB}(x) &= \mu_{t-1}(x) + \lambda_t \sigma_{t-1}(x) \quad \text{(Srinivas et al., 2010)} \nonumber
\end{align*}
\]
Gaussian process optimization

Assume $f \sim GP(\mu, k)$.

At round t,
- Predict $\mu_{t-1}(x)$ and $\sigma^2_{t-1}(x)$
- Pick an input x_t by optimizing an acquisition function

Examples:
- $PI(x) = Pr[f(x) > \theta_t]$ (Kushner, 1964)
Gaussian process optimization

Assume $f \sim GP(\mu, k)$.

At round t,
- Predict $\mu_{t-1}(x)$ and $\sigma^2_{t-1}(x)$
- Pick an input x_t by optimizing an acquisition function

Examples:
- $PI(x) = \Pr[f(x) > \theta_t]$ (Kushner, 1964)
- $EI(x) = \mathbb{E}[(f(x) - \theta_t)_+]$ (Močkus, 1974)
Gaussian process optimization

Assume \(f \sim GP(\mu, k) \).

At round \(t \),

- Predict \(\mu_{t-1}(x) \) and \(\sigma^2_{t-1}(x) \)
- Pick an input \(x_t \) by optimizing an acquisition function

Examples:

- \(\text{PI}(x) = \Pr[f(x) > \theta_t] \) (Kushner, 1964)
- \(\text{EI}(x) = \mathbb{E}[(f(x) - \theta_t)_+] \) (Močkus, 1974)
- \(\text{UCB}(x) = \mu_{t-1}(x) + \lambda_t \sigma_{t-1}(x) \) (Srinivas et al., 2010)
Existing acquisition functions

Upper Confidence Bound (GP-UCB) (Srinivas et al., 2010)

\[x_t = \arg \max_{x \in \tilde{x}} \mu_{t-1}(x) + \lambda_t \sigma_{t-1}(x) \]

Can set \(\lambda_t \) that guarantees high-probability sub-linear regret in theory.
Existing acquisition functions

Upper Confidence Bound (GP-UCB) (Srinivas et al., 2010)

\[x_t = \arg \max_{x \in \mathcal{X}} \mu_{t-1}(x) + \lambda_t \sigma_{t-1}(x) \]

Can set \(\lambda_t \) that guarantees high-probability sub-linear regret in theory.

\[\begin{array}{c|c|c|c|c}
\lambda & 0 & 10 & 20 & 30 \\
\hline
\text{R} & 0.2 & 0.4 & 0.6 & 0.8 & 1.0 & 1.2 & 1.4 & 1.6 \\
\hline
\lambda = 1 & \text{UCB} \\
\lambda = 2 & \text{UCB} \\
\lambda = 3 & \text{UCB} \\
\lambda = 4 & \text{UCB} \\
\lambda \text{ UCB} & \text{UCB} \\
\end{array} \]

Zi Wang (MIT CSAIL)

Optimization as Estimation

May 9, 2016 4 / 17
Upper Confidence Bound (GP-UCB) (Srinivas et al., 2010)

\[x_t = \arg \max_{x \in \mathcal{X}} \mu_{t-1}(x) + \lambda_t \sigma_{t-1}(x) \]

Can set \(\lambda_t \) that guarantees high-probability sub-linear regret in theory.
A new method: query the most likely arg max

Given the observations, what is the most likely arg max of the function?
A new method: query the most likely arg max

Given the observations, what is the most likely arg max of the function?

Notice that, for any $x \in \mathcal{X}$, $f(x)$ has a Gaussian distribution.
A new method: query the most likely arg max

Given the observations, what is the most likely arg max of the function?

Notice that, for any $x \in \mathcal{X}$, $f(x)$ has a Gaussian distribution.
Optimization as estimation

EST: estimate the arg max of the function f.
EST: estimate the arg max of the function f.

1. What is the function maximum?
Optimization as estimation

EST: estimate the arg max of the function f.

1. What is the function maximum?
2. How likely is $f(x)$ the maximum?
Step 1: Estimate the function maximum

1. What is the function maximum?
Step 1: Estimate the function maximum

1. What is the function maximum?
 Consider discrete \mathcal{X} and negligible noise,

 $$\hat{m} = \mathbb{E}[\max_{x \in \mathcal{X}} f(x)] = \max_{\tau \in [1, t-1]} y_\tau + \int_{\infty}^\infty \Pr[\max_{x \in \mathcal{X}} f(x) > w] dw \max_{\tau \in [1, t-1]} y_\tau$$

 Approximate the joint Gaussian with independent Gaussians
 $$g(w) = 1 - \Pr[f(x) \leq w, \forall x \in \mathcal{X}] \approx 1 - \prod_{x \in \mathcal{X}} \Phi(w - \mu(x) / \sigma(x))$$

 Integrate numerically (ESTn) or approximately (ESTa)
Step 1: Estimate the function maximum

What is the function maximum?
Consider discrete \mathcal{X} and negligible noise,

$$\hat{m} = \mathbb{E}[\max_{x \in \mathcal{X}} f(x)] = \max_{\tau \in [1, t-1]} y_\tau + \int_0^\infty \Pr[\max_{x \in \mathcal{X}} f(x) > w] \, dw$$

Approximate the joint Gaussian with independent Gaussians

$$g(w) = 1 - \Pr[f(x) \leq w, \forall x \in \mathcal{X}] \approx 1 - \prod_{x \in \mathcal{X}} \Phi\left(\frac{w - \mu(x)}{\sigma(x)}\right)$$
Step 1: Estimate the function maximum

1. What is the function maximum?
Consider discrete \mathcal{X} and negligible noise,

$$\hat{m} = \mathbb{E}[\max_{x \in \mathcal{X}} f(x)] = \max_{\tau \in [1, t-1]} y_{\tau} + \int_{\max_{x \in \mathcal{X}} f(x) > w} \Pr[\max_{x \in \mathcal{X}} f(x) > w] \, dw$$

- Approximate the joint Gaussian with independent Gaussians

$$g(w) = 1 - \Pr[f(x) \leq w, \forall x \in \mathcal{X}] \approx 1 - \prod_{x \in \mathcal{X}} \Phi\left(\frac{w - \mu(x)}{\sigma(x)}\right)$$

- Integrate numerically (ESTn) or approximately (ESTa)
Step 2: calculate the probability that x is the arg max

2 How likely is $f(x)$ the maximum?
Step 2: calculate the probability that \mathbf{x} is the arg max

2. How likely is $f(\mathbf{x})$ the maximum?

$$\Pr[f(\mathbf{x}) \text{ is the maximum} | \hat{m}] \approx Q\left(\frac{\hat{m} - \mu(\mathbf{x})}{\sigma(\mathbf{x})} \right) \prod_{\mathbf{x}' \neq \mathbf{x}} \Phi\left(\frac{\hat{m} - \mu(\mathbf{x}')}{\sigma(\mathbf{x}')} \right)$$
Step 2: calculate the probability that \mathbf{x} is the arg max

How likely is $f(\mathbf{x})$ the maximum?

$$
\Pr[f(\mathbf{x}) \text{ is the maximum} | \hat{m}] \approx \frac{\Pr[f(\mathbf{x}) \geq \hat{m}]}{Q\left(\frac{\hat{m} - \mu(\mathbf{x})}{\sigma(\mathbf{x})}\right)} \prod_{\mathbf{x'} \neq \mathbf{x}} \Phi\left(\frac{\hat{m} - \mu(\mathbf{x'})}{\sigma(\mathbf{x'})}\right)
$$
Step 2: calculate the probability that \mathbf{x} is the arg max

How likely is $f(\mathbf{x})$ the maximum?

$$\Pr[f(\mathbf{x}) \text{ is the maximum} | \hat{m}] \approx \frac{\Pr[f(\mathbf{x}) \geq \hat{m}]}{Q\left(\frac{\hat{m} - \mu(\mathbf{x})}{\sigma(\mathbf{x})}\right)} \prod_{\mathbf{x}' \neq \mathbf{x}} \Phi\left(\frac{\hat{m} - \mu(\mathbf{x}')}{{\sigma(\mathbf{x}')}}\right) \Pr[\forall \mathbf{x}' \neq \mathbf{x}, f(\mathbf{x}') < \hat{m}]$$
Step 2: calculate the probability that \(\mathbf{x} \) is the arg max

How likely is \(f(\mathbf{x}) \) the maximum?

\[
\Pr[f(\mathbf{x}) \text{ is the maximum} | \hat{m}] \approx Q\left(\frac{\hat{m} - \mu(\mathbf{x})}{\sigma(\mathbf{x})} \right) \prod_{\mathbf{x}' \neq \mathbf{x}} \Phi\left(\frac{\hat{m} - \mu(\mathbf{x}')}{\sigma(\mathbf{x}')} \right)
\]

\[
\arg \max_{\mathbf{x} \in \mathcal{X}} \Pr[f(\mathbf{x}) \text{ is the maximum} | \hat{m}] = \arg \min_{\mathbf{x} \in \mathcal{X}} \frac{\hat{m} - \mu(\mathbf{x})}{\sigma(\mathbf{x})}
\]
EST

\[\Pr[x = \arg\max f(x) | \hat{m}] \]
Connections to GP-UCB and PI

EST

\[\Pr[\mathbf{x} = \text{arg max } f(\mathbf{x}) | \hat{m}] \]

\[\theta = \hat{m} \]

PI

\[\text{PI}(\mathbf{x}) = \Pr[f(\mathbf{x}) > \theta] \]
Connections to GP-UCB and PI

\[\text{GP-UCB} \]
\[UCB(x) = \mu(x) + \lambda \sigma(x) \]

\[\lambda = \min_{x \in \mathcal{X}} \frac{\hat{m} - \mu(x)}{\sigma(x)} \]

\[\text{EST} \]
\[\Pr[x = \arg \max f(x) | \hat{m}] \]

\[\text{PI} \]
\[\text{PI}(x) = \Pr[f(x) > \theta] \]

\[\theta = \hat{m} \]
Connections to GP-UCB and PI

GP-UCB

$$\text{UCB}(x) = \mu(x) + \lambda \sigma(x)$$

$$\lambda = \min_{x \in X} \frac{\hat{m} - \mu(x)}{\sigma(x)}$$

$$\theta = \max_{x \in X} \mu(x) + \lambda \sigma(x)$$

EST

$$\Pr[x = \arg\max f(x) | \hat{m}]$$

$$\theta = \hat{m}$$

PI

$$\text{PI}(x) = \Pr[f(x) > \theta]$$
At round t, pick the input that is most likely to reach a target value.

$$\hat{m}_t = \begin{cases}
\max_{x \in \mathcal{X}} \mu_{t-1}(x) + \lambda_t \sigma_{t-1}(x) & \text{GP-UCB} \\
\theta_t & \text{PI} \\
\mathbb{E}[\max_{x \in \mathcal{X}} f(x)] & \text{EST}
\end{cases}$$

$$x_t \leftarrow \arg \min_{x \in \mathcal{X}} \frac{\hat{m}_t - \mu_{t-1}(x)}{\sigma_{t-1}(x)}$$
Regret bounds

Theorem (Regret bounds for EST)

Assume \(\hat{m}_t \geq \max_{x \in \mathcal{X}} f(x), \forall t \in [1, T] \). Then,

\[
\mathbb{E}[R_T] \leq \nu_* \sqrt{CT\gamma_T}.
\]

With probability at least \(1 - \delta \),

\[
R_T \leq (\nu_* + \zeta_T) \sqrt{CT\gamma_T},
\]

\(C = \frac{2}{\log(1+\sigma^{-2})}, \nu_t \triangleq \min_{x \in \mathcal{X}} \frac{\hat{m}_t - \mu_{t-1}(x)}{\sigma_{t-1}(x)}, t^* = \arg \max_t \nu_t \).

\(k(x, x') \leq 1, \gamma_T = \max_{A \subseteq \mathcal{X}, |A| \leq T} l(y_A, f_A), \zeta_T = (2 \log(\frac{T}{2\delta}))^{\frac{1}{2}}. \)
Theorem (Regret bounds for EST)

Assume \(\hat{m}_t \geq \max_{x \in X} f(x), \forall t \in [1, T] \). Then,

\[
\mathbb{E}[R_T] \leq \nu^*_T \sqrt{CT\gamma_T}.
\]

With probability at least 1 - \(\delta \),

\[
R_T \leq (\nu^*_T + \zeta_T) \sqrt{CT\gamma_T},
\]

\(C = \frac{2}{\log(1+\sigma^{-2})}, \nu_t \triangleq \min_{x \in X} \frac{\hat{m}_t - \mu_{t-1}(x)}{\sigma_{t-1}(x)}, t^* = \arg \max_t \nu_t \).

\(k(x, x') \leq 1, \gamma_T = \max_{A \subseteq X, |A| \leq T} l(y_A, f_A), \zeta_T = (2 \log(\frac{T}{2\delta}))^{\frac{1}{2}}. \)
Slepian’s Comparison Lemma (Slepian, 1962; Massart, 2007)

Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ be two multivariate Gaussian random vectors with the same mean and variance, such that

$$E[\mathbf{v}_i \mathbf{v}_j] \leq E[\mathbf{u}_i \mathbf{u}_j], \forall i, j.$$

Then,

$$E[\sup_{i \in [1,n]} \mathbf{v}_i] \geq E[\sup_{i \in [1,n]} \mathbf{u}_i].$$
Slepian’s Comparison Lemma (Slepian, 1962; Massart, 2007)

Let \(u, v \in \mathbb{R}^n \) be two multivariate Gaussian random vectors with the same mean and variance, such that

\[
E[v_i v_j] \leq E[u_i u_j], \quad \forall i, j.
\]

Then,

\[
E[\sup_{i \in [1,n]} v_i] \geq E[\sup_{i \in [1,n]} u_i].
\]

Ignoring positive covariance gives higher expected maximum.
Experiments

More results at Session 2 Poster 47
Zi Wang (MIT CSAIL)
Optimization as Estimation
May 9, 2016 14 / 17
Experiments

Robotics

Vision

More results at Session 2 Poster 47
A new BO strategy from the viewpoint of estimating arg max.

Adaptively tuning λ and θ in GP-UCB and PI.

Sub-linear regret bounds and good empirical results.

Source code: https://github.com/zi-w/GP-EST
• A new BO strategy from the viewpoint of estimating arg max.
• Adaptively tuning λ and θ in GP-UCB and PI.
A new BO strategy from the viewpoint of estimating arg max.
Adaptively tuning λ and θ in GP-UCB and PI.
Sub-linear regret bounds and good empirical results.
Summary: Optimization as Estimation

- A new BO strategy from the viewpoint of estimating arg max.
- Adaptively tuning λ and θ in GP-UCB and PI.
- Sub-linear regret bounds and good empirical results.
- Source code: https://github.com/zi-w/GP-EST
A new BO strategy from the viewpoint of estimating arg max.
Adaptively tuning λ and θ in GP-UCB and PI.
Sub-linear regret bounds and good empirical results.
Source code: https://github.com/zi-w/GP-EST