# A tutorial on Bayesian optimization

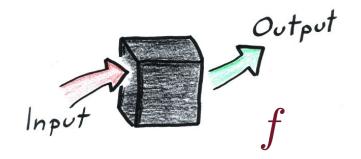
Zi Wang @ Google Brain

Google Research

#### **Blackbox Function Optimization**



[Calandra et al., 2015]



Goal:

$$x_* = \operatorname*{argmax}_{\mathcal{X} \subset \mathbb{R}^d} f(x)$$

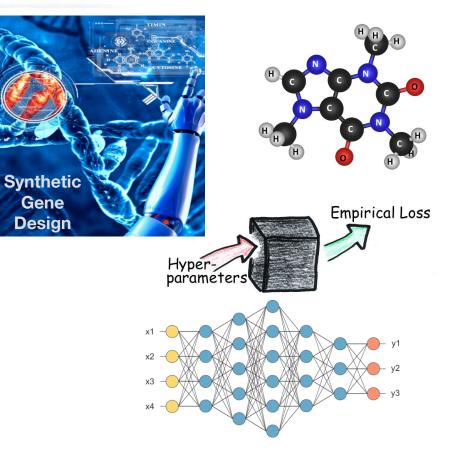
## **Blackbox Function Optimization**



Goal: 
$$x_* = \underset{\mathcal{X} \subset \mathbb{R}^d}{\operatorname{argmax}} f(x)$$
  
Challenges:

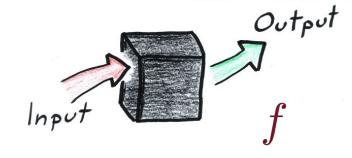
- f is expensive to evaluate
- f is multi-peak
- no gradient information
- evaluations can be noisy

[Snoek et al., 2012; Gonzalez et al., 2015; Hernández-Lobato et al., 2017]



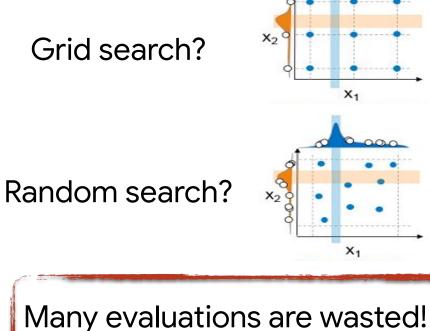
#### [Koch, 2016]

## **Blackbox Function Optimization**



Goal: 
$$x_* = \underset{\mathcal{X} \subset \mathbb{R}^d}{\operatorname{argmax}} f(x)$$
  
Challenges:

- f is expensive to evaluate
- f is multi-peak
- no gradient information
- evaluations can be noisy

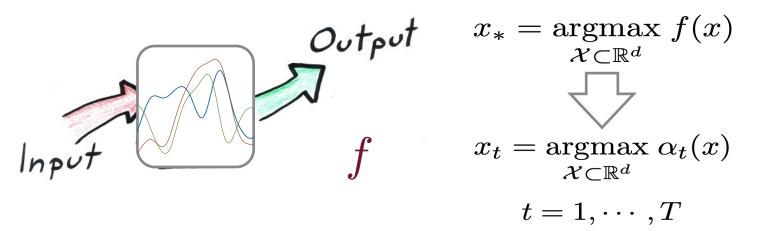


#### **Bayesian Optimization**

Idea: build a probabilistic model of the function f

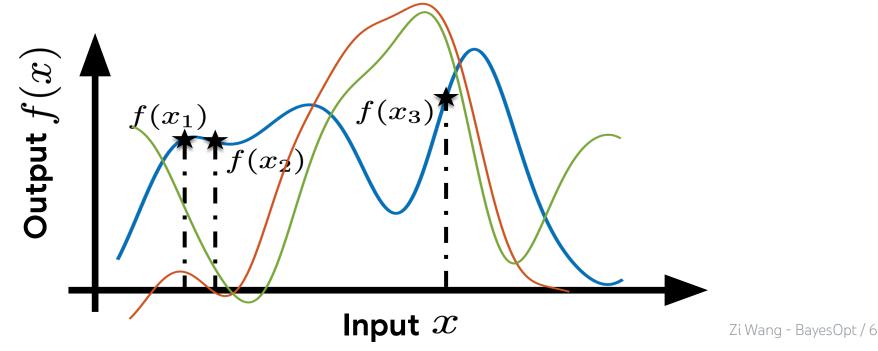
LOOP

- choose new query point(s) to evaluate decision criterion: acquisition function  $\alpha_t(\cdot)$
- update model



## Gaussian Processes (GPs)

- probability distribution over functions
- any finite set of function values is a multi-variate Gaussian



#### Gaussian Processes (GPs)

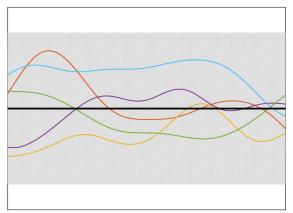
- probability distribution over functions
- any finite set of function values is a multi-variate Gaussian
- kernel function  $k(\cdot, \cdot)$ ; mean function  $\mu(\cdot)$

$$\begin{bmatrix} f(x_1) \\ \vdots \\ f(x_n) \end{bmatrix} \sim \mathcal{N}\left( \begin{bmatrix} \mu(x_1) \\ \vdots \\ \mu(x_n) \end{bmatrix}, \begin{bmatrix} k(x_1, x_1), & \cdots, & k(x_1, x_n) \\ \vdots \\ k(x_n, x_1), & \cdots, & k(x_n, x_n) \end{bmatrix} \right)$$

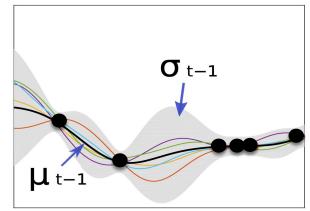
• function  $f \sim GP(\mu, k)$ ; observe noisy output at  $x_{\tau}$  $y_{\tau} = f(x_{\tau}) + \epsilon, \ \epsilon \sim \mathcal{N}(0, \sigma^2)$ 

## Gaussian Processes (GPs)

#### Samples from the prior



Samples from the posterior



Given observations  $D_t = \{(x_\tau, y_\tau)\}_{\tau=1}^{t-1}$  predict posterior mean and variance in closed form via conditional Gaussian

$$\mu_{t-1}(x) = k_{t-1}(x)^{\mathrm{T}} (K_{t-1} + \sigma^2 I)^{-1} y_{t-1}$$

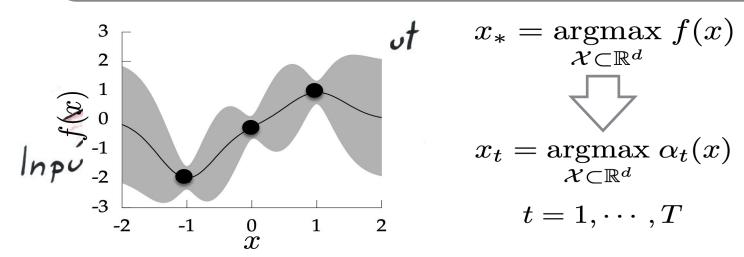
$$\sigma_{t-1}(x)^2 = k(x,x) - k_{t-1}(x)^{\mathrm{T}}(K_{t-1} + \sigma^2 I)^{-1} k_{t-1}(x)$$

#### **Bayesian Optimization**

Idea: build a probabilistic model of the function f

LOOP

- choose new query point(s) to evaluate decision criterion: acquisition function  $\alpha_t(\cdot)$
- update model



How to design acquisition functions?

# Acquisition functions in BayesOpt

Google Research

#### Examples of acquisition functions in BayesOpt

Prior:  $f \sim GP(\mu, k)$ At iteration t,

- predict the posterior  $\mu_{t-1}(x)$  and  $\sigma_{t-1}^2(x)$
- pick an input by optimizing the acquisition function  $x_t = rg \max_x \frac{\alpha_t(x)}{\alpha_t(x)}$

# Upper confidence bounds, expected improvement, probability of improvement, entropy search methods...

[Auer, 2002; Srinivas et al., 2010; Kushner, 1964; Mockus, 1974; Hennig & Schuler, 2012; Hernandez-Lobato et al., 2014; Wang&Jegelka, 2017; Hoffman&Zoubin, 2015...]

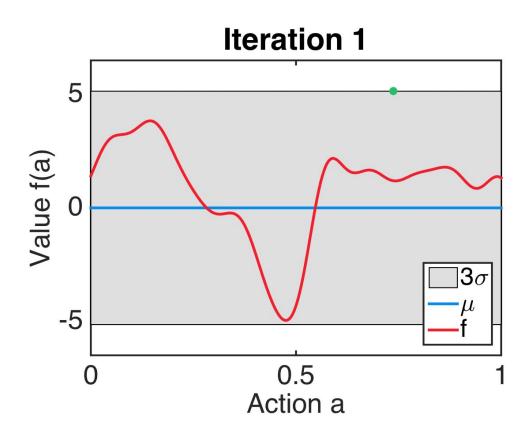
[Auer, 2002; Srinivas et al., 2010]

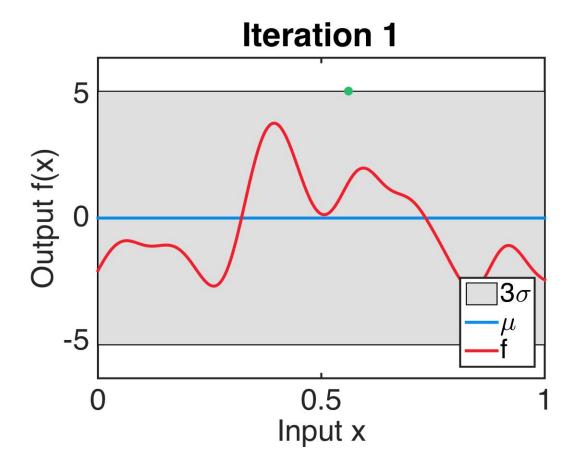
# Prior: $f \sim GP(\mu, k)$

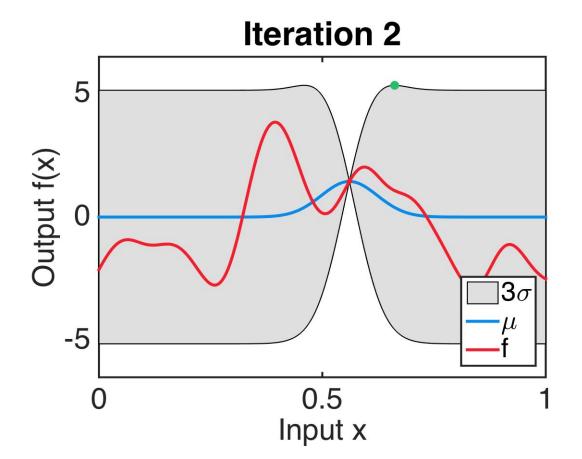
At iteration t,

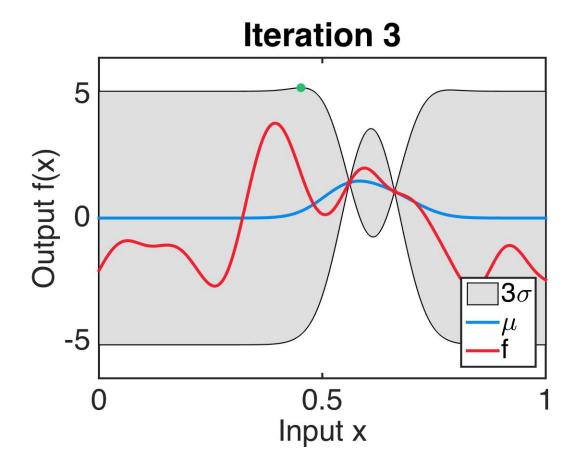
- predict the posterior  $\mu_{t-1}(x)$  and  $\sigma_{t-1}^2(x)$
- pick an input by optimizing the acquisition function

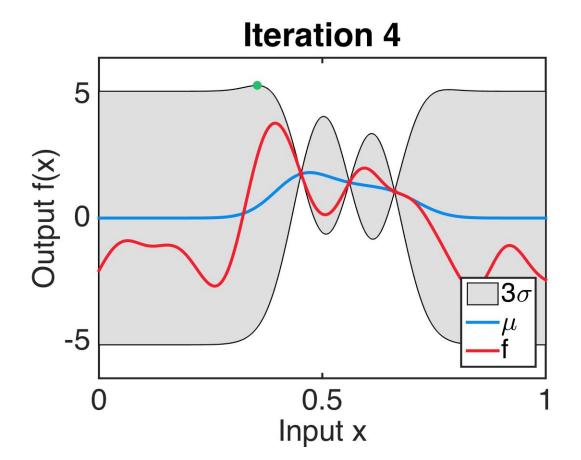
$$x_t = \arg \max \mu_{t-1}(x) + \beta \sigma_{t-1}(x)$$

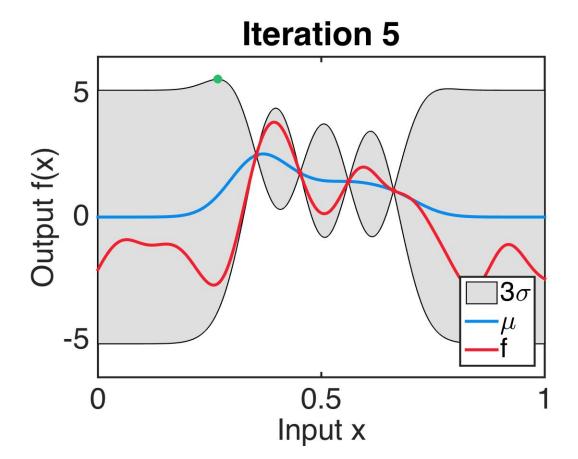


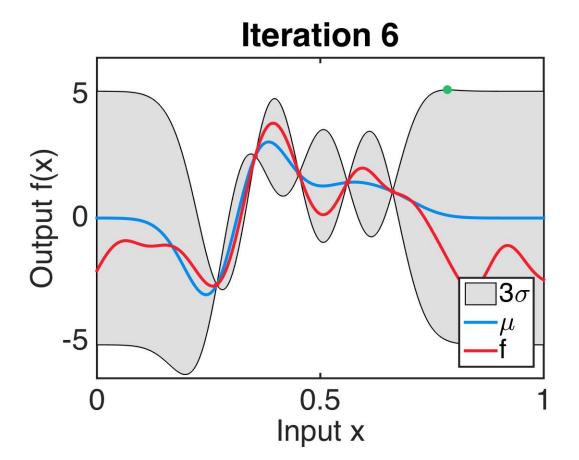


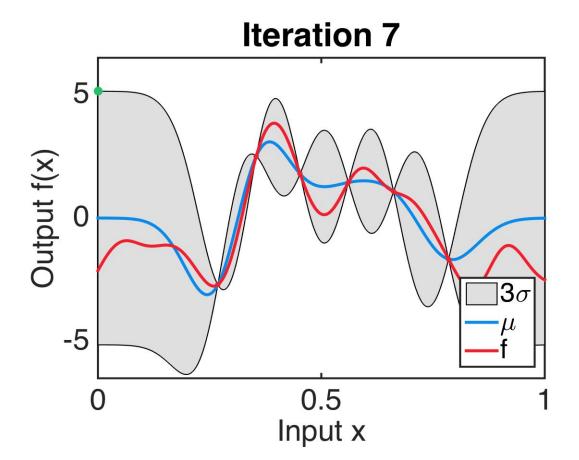


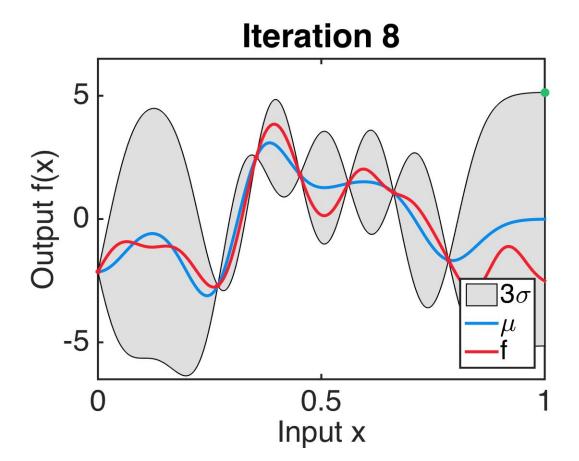


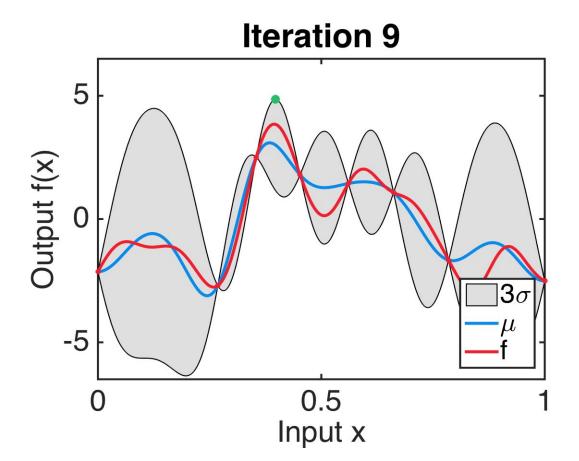


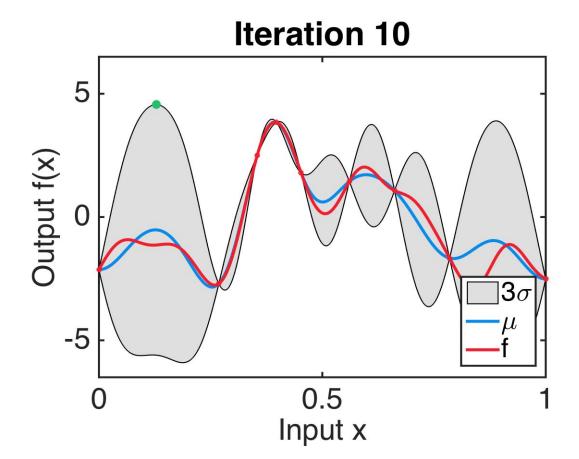


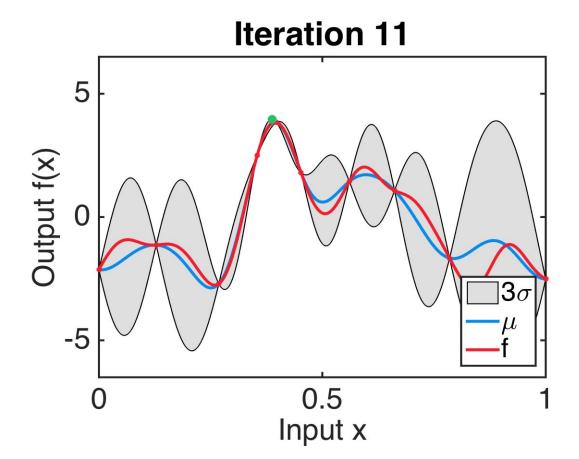


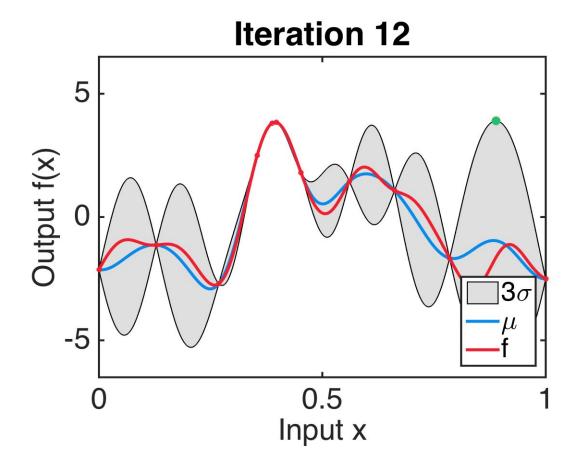


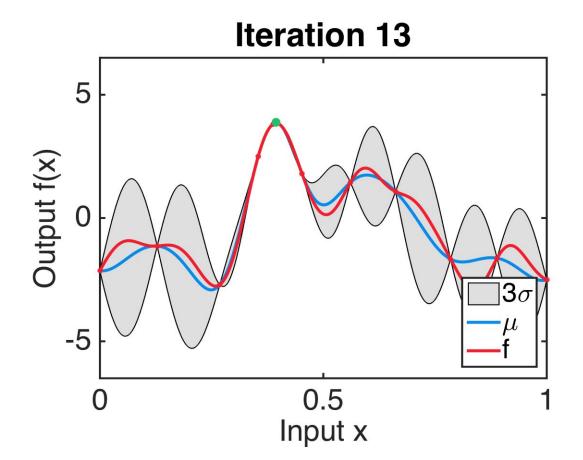










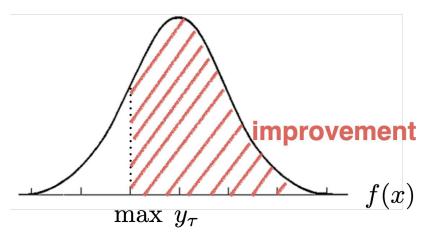


#### Example of acquisition functions: PI

[Kushner, 1964]

#### **Probability of Improvement (PI)**

- Observations:  $D_t = \{(x_{\tau}, y_{\tau})\}_{\tau=1}^{t-1}$
- The best observation is  $\max y_{\tau}$
- for each x, predict the posterior mean and variance



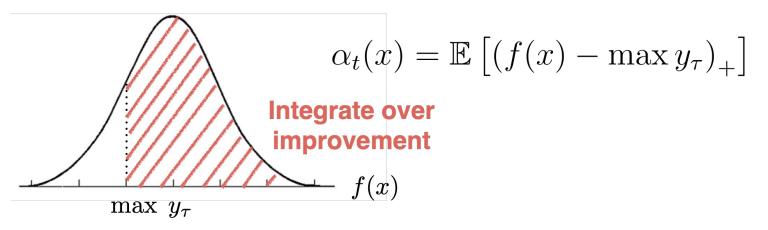
$$\alpha_t(x) = \Pr[f(x) \ge \max y_\tau]$$
  
 $\alpha_t(x) = \Pr[f(x) \ge \max y_\tau + \epsilon]$ 

#### Example of acquisition functions: El

[Kushner, 1964]

#### **Expected Improvement (EI)**

- Observations:  $D_t = \{(x_\tau, y_\tau)\}_{\tau=1}^{t-1}$
- The best observation is  $\max y_{\tau}$
- for each x, predict the posterior mean and variance



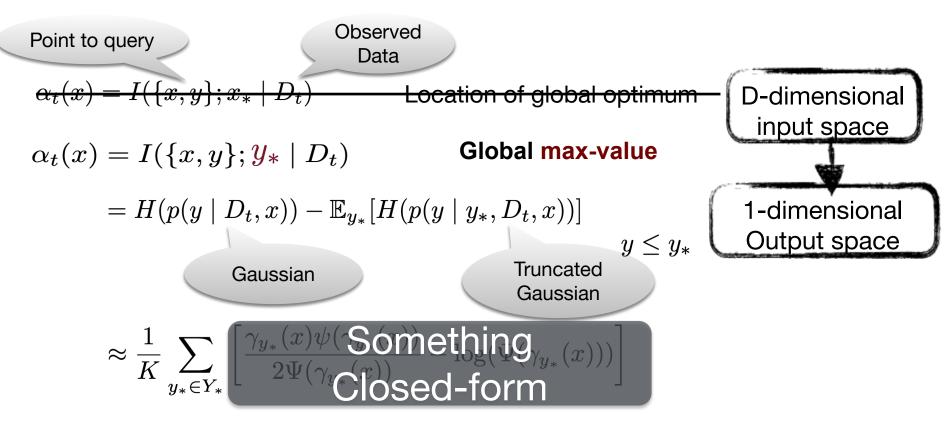
#### Entropy Search and Predictive Entropy Search

$$\begin{array}{l} \underset{x_t \in \mathfrak{X}}{\operatorname{maximize}} \alpha_t(x_t) & t = 1, \cdots, T \\ \\ \begin{array}{c} \underset{query}{\operatorname{Point to}} \\ \underset{query}{\operatorname{point to}} \\ \\ \alpha_t(x) = I(\{x, y\}; x_* \mid D_t) \\ \\ \end{array} & = H(p(x_* \mid D_t)) - \mathbb{E}_y[H(p(x_* \mid D_t \cup \{x, y\}))] \\ \\ \end{array} \\ = H(p(y \mid D_t, x)) - \mathbb{E}_{x_*}[H(p(y \mid x_*, D_t, x))] \end{array}$$

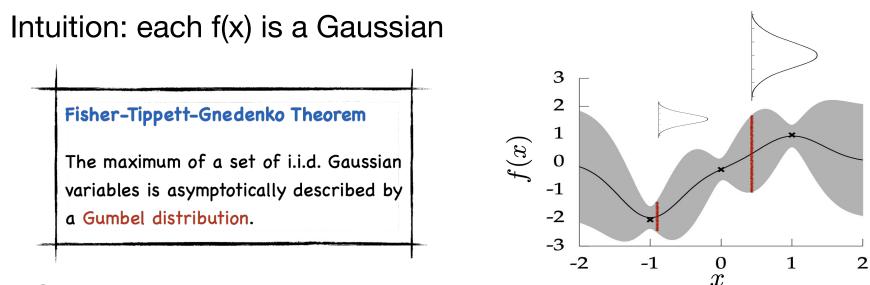
[Hennig & Schuler, 2012; Hernandez-Lobato et al., 2014]

#### Max-value Entropy Search

[Wang&Jegelka, 2017; Hoffman&Zoubin, 2015]

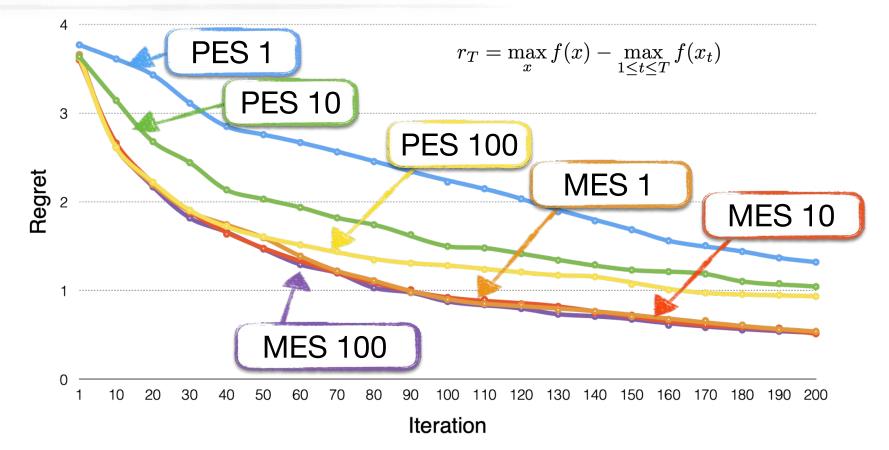


#### Sample $y_*$ with a Gumbel Distribution



- Sample representative points
- Approximate the max-value of the representative points by a Gumbel distribution [Wang&Jegelka, 2017]

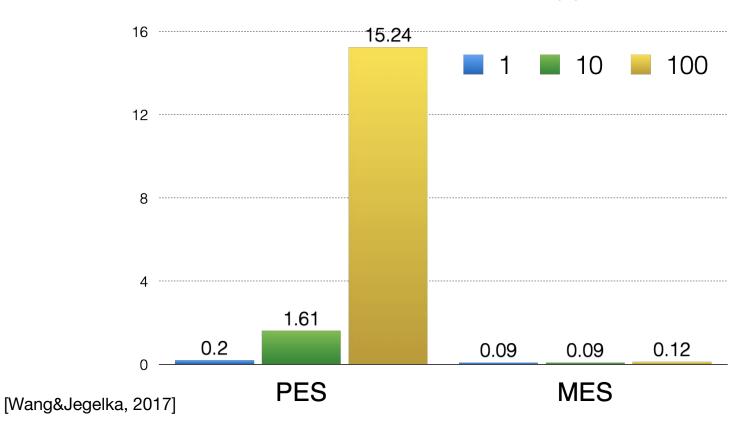
#### MES gets faster and better empirical results than PES



[Wang&Jegelka, 2017]

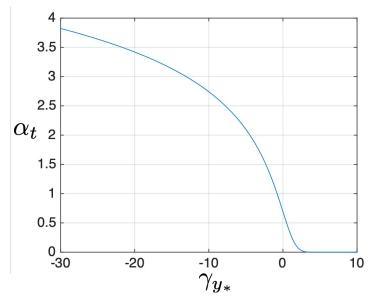
#### MES gets faster and better empirical results than PES

Runtime Per Iteration (s)



#### Understanding the acquisition function in MES

$$\frac{\gamma_{y_*}(x)\psi(\gamma_{y_*}(x))}{2\Psi(\gamma_{y_*}\alpha_t(\gamma_{y_*}(x)))}(\Psi(\gamma_{y_*}(x)))$$



$$\gamma_{y_*}(x) = \frac{y_* - \mu_{t-1}(x)}{\sigma_{t-1}(x)}$$

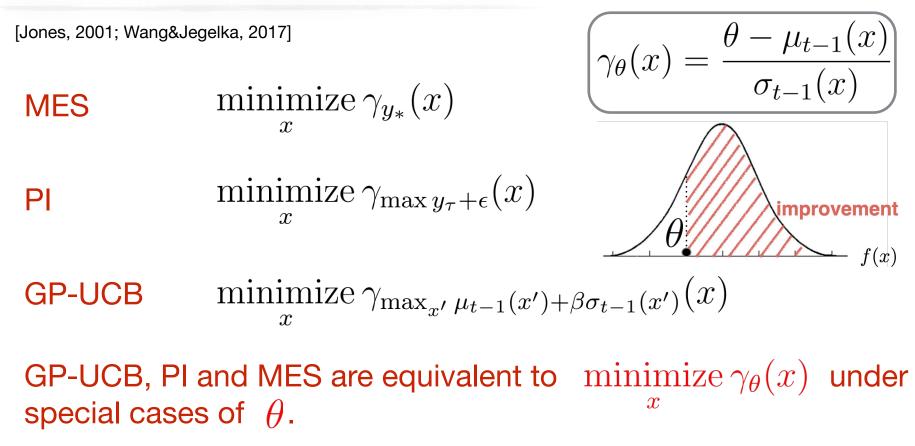
So,  $\max_{x} \operatorname{maximize} \alpha_t(x)$ is equivalent to  $\min_{x} \gamma_{y_*}(x)$ .

[Wang&Jegelka, 2017]

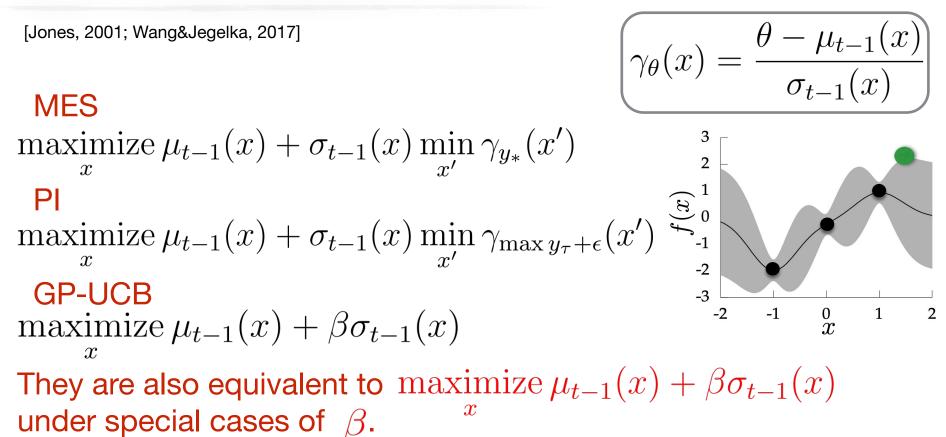
 $\alpha_t(x)$ 

 $\approx$ 

#### Relations among GP-UCB, PI and MES



#### Relations among GP-UCB, PI and MES



#### Regret bounds for GP-UCB and related methods

[Srinivas et al., 2010; Wang et al., 2016]

**Define regret as:** 
$$r_T = \max_x f(x) - \max_{1 \le t \le T} f(x_t)$$

Key assumptions:  $f \sim GP(\mu, k)$ 

Mean function and kernel are both given. Optimize in a d-dimensional compact space.

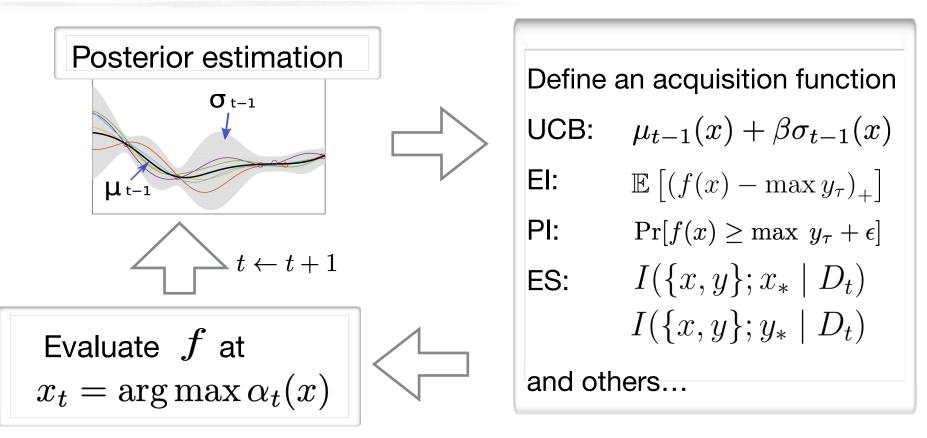
After T iterations, GP-UCB obtains  $r_T =$ 

$$= O(\sqrt{\frac{d(\log T)^{d+2}}{T}})$$

**MES obtains** 
$$r_T = O\left(\sqrt{\frac{(\log T)^{d+2}}{T}} + \max_t \min_x \frac{y_* - \mu_{t-1}(x)}{\sigma_{t-1}(x)} \sqrt{\frac{(\log T)^{d+1}}{T}}\right).$$

\* For simplicity we only show regret bounds for Gaussian kernels. Regret for other kernels may look different.

#### Summary of how BayesOpt works



Challenges, open problems and some attempts

# Selected topics in BayesOpt

- → High dimensional search space
- → Unknown GP prior
- → Parallel evaluations
- → Unknown constraints
- → Applications in robotics

Google Research

Challenges, open problems and some attempts

# High dimensional search space

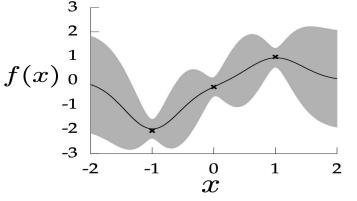
Google Research

#### Challenges in high-dimensional BO

 optimizing multi-peak acquisition functions in high dimensions computationally challenging

 estimating a nonlinear function in high input dimensions: need more observations regret r<sub>T</sub> ≈ statistically challenging

$$r_T \approx O\left(\sqrt{\frac{(\log T)^{d+2}}{T}}\right)$$



[Wang et al., 2013; Djolonga el al., 2013; Kandasamy et al., 2015]

#### Possible solution: additive Gaussian processes

 $f_0(x^{A_0})$ 

 $f_1(x^{A_1})$ 

$$f(x) = \sum_{m \in [M]} f_m(x^{A_m})$$

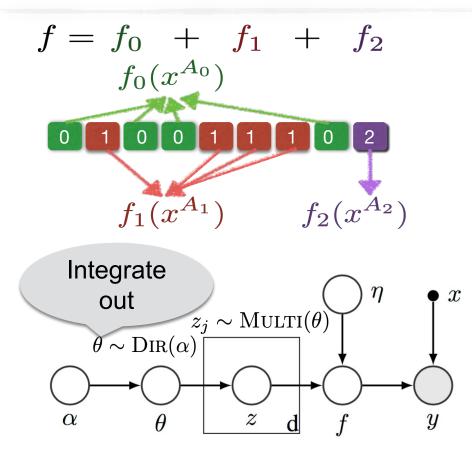
[Hastie&Tibshirani, 1990; Kandasamy et al., 2015]

- optimize acquisition function block-wise computational efficiency
- lower-complexity functions statistical efficiency

#### What is the additive structure?

 $f_2(x^{A_2})$ 

#### Structural Kernel Learning (SKL)



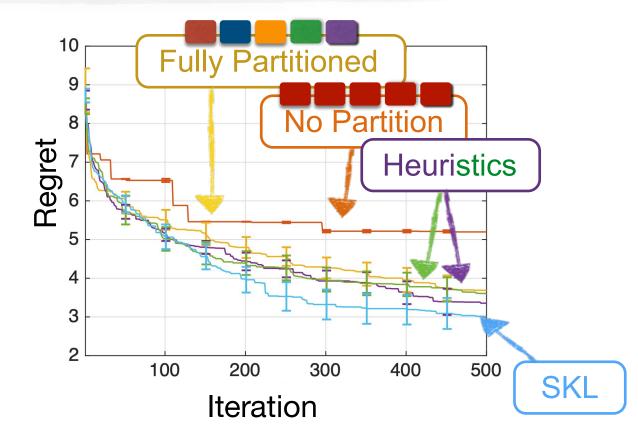
[Wang et al., 2017]

Decomposition indicator:  $z = [0 \ 1 \ 0 \ 0 \ 1 \ 1 \ 1 \ 0 \ 2]$ Learn z!

Learn posterior $p(z \mid D_n; \alpha)$ 

via Gibbs sampling. easy updates

#### Empirical results for Structural Kernel Learning (SKL)

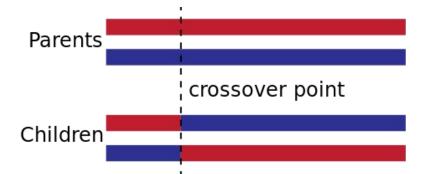


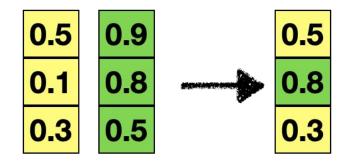
[Wang et al., 2018]

#### Connection to genetic algorithms?

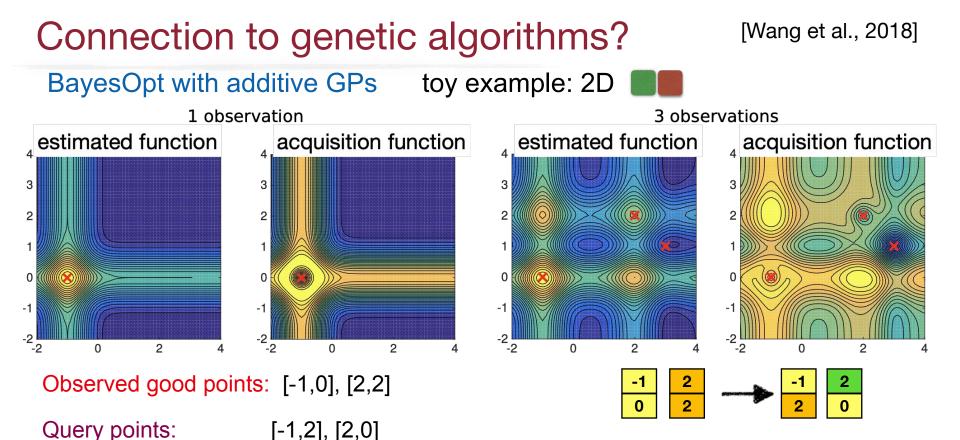
#### Evolutionary/Genetic algorithms:

- maintain ensemble of promising points
- new points from exchanging coordinates of good points randomly





https://en.wikipedia.org/wiki/Crossover\_(genetic\_algorithm)



Learned instead of completely random coordinate partition.

### Other ideas to solve high-dim BayesOpt

- REMBO: low-dim embedding [Wang et al., JAIR 2016]
- BOCK: BO with cylindrical kernels [Oh et al., ICML 2018]
- Additive GPs with overlapping groups [Rolland et al., AISTATS 2018]
- .....

#### Joint problems:

Assume special structures of high-dim functions but with little data, it is difficult to verify if the assumptions are true.

Challenges, open problems and some attempts

## **Parallel evaluations**

Google Research

#### BayesOpt with parallel compute resources

- GPUs running in parallel for hyperparameter tuning in deep learning;
- group of robots for offline learning of control parameter;
- parallel wet lab experiments for biology and chemistry applications; etc.



#### Some ideas to propose a batch of queries

 Instead of optimizing one input over information gain, optimize Q inputs. [Shah&Ghahramani, 2015]

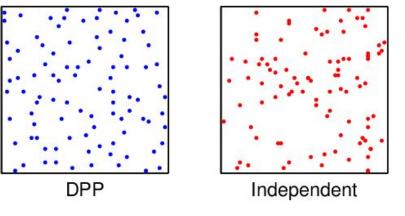
 $a_{\text{PPES}}(\mathcal{S}_t|\mathcal{D}) = \mathrm{H}\left[p(\boldsymbol{x}^*|\mathcal{D})\right] - \mathbb{E}_{p\left(\{y_q\}_{q=1}^Q \mid \mathcal{D}, \mathcal{S}_t\right)} \left[\mathrm{H}\left[p\left(\boldsymbol{x}^*|\mathcal{D} \cup \{\boldsymbol{x}_q, y_q\}_{q=1}^Q\right)\right]\right]$ 

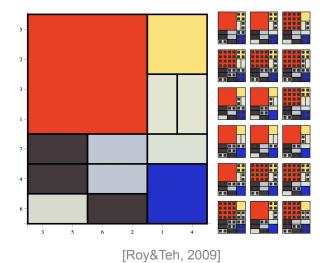
• Choose a new point based on expected acquisition function under all possible outcomes of pending evaluations. [Snoek et al., 2012]

$$\hat{a}(\mathbf{x}; \{\mathbf{x}_n, y_n\}, \theta, \{\mathbf{x}_j\}) = \int_{\mathbb{R}^J} a(\mathbf{x}; \{\mathbf{x}_n, y_n\}, \theta, \{\mathbf{x}_j, y_j\}) \, p(\{y_j\}_{j=1}^J \,|\, \{\mathbf{x}_j\}_{j=1}^J, \{\mathbf{x}_n, y_n\}_{n=1}^N) \, \mathrm{d}y_1 \cdots \mathrm{d}y_J$$

### Some ideas to propose a batch of queries

- Use determinantal point process (DPP) to generate a diverse set of queries. [Kathuria et al., 2016]
- Use a Mondrian process to propose one query per partition. [Wang et al., 2018]





[Kulesza&Taskar, 2011]

#### Potential issues with existing methods

- Computational cost is usually high.
- Not all adapt to asynchronous parallel BayesOpt settings.
- Difficult to debug especially in high-dimensional settings.
- Parallel BayesOpt typically co-occur with large scale high-dimensional problems, but a joint solution for these conditions is not yet satisfying.

Challenges, open problems and some attempts

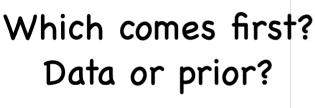
## **Unknown priors**

Google Research

#### Bayesian optimization with an unknown prior

Estimate "prior" from data

- maximum likelihood
- hierarchical Bayes



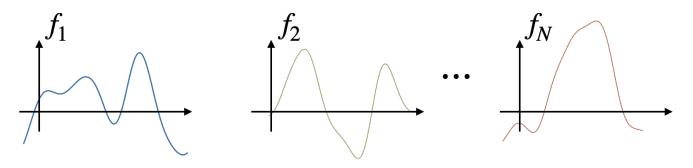


- Regret bounds exist only when prior is assumed given
- bad settings of priors make BO perform poorly and seem to be a bad approach

Bayesian optimization with an unknown prior

#### meta / multi-task / transfer learning

- Our idea: learn the "prior" from past experience with similar functions
- Assumption: we can collect data on functions sampled from the same prior  $f_1, f_2, \dots, f_N \sim GP(\mu, k)$



<sup>[</sup>Wang\*&Kim\*&Kaelbling, NeurIPS 2018]

#### How to learn the GP prior?

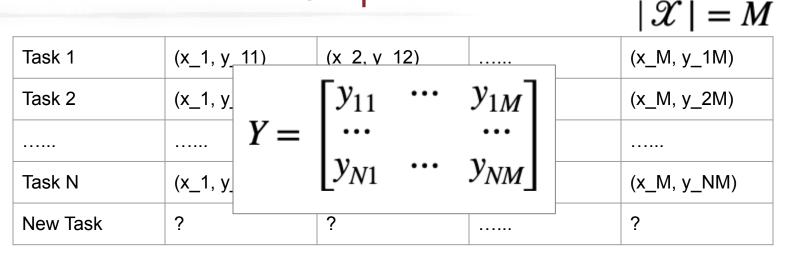
#### $|\mathcal{X}| = M$

Use finite input space to illustrate; extensions to continuous case requires more assumptions. [Wang et al., 2018 + ongoing work]

Prior estimation with meta training data  $\{[(x_j, y_{ij})]_{j=1}^M\}_{i=1}^N$ 

| Task 1   | (x_1, y_11) | (x_2, y_12) | <br>(x_M, y_1M) |
|----------|-------------|-------------|-----------------|
| Task 2   | (x_1, y_21) | (x_2, y_22) | <br>(x_M, y_2M) |
|          |             |             | <br>            |
| Task N   | (x_1, y_N1) | (x_2, y_N2) | <br>(x_M, y_NM) |
| New Task | ?           | ?           | <br>?           |

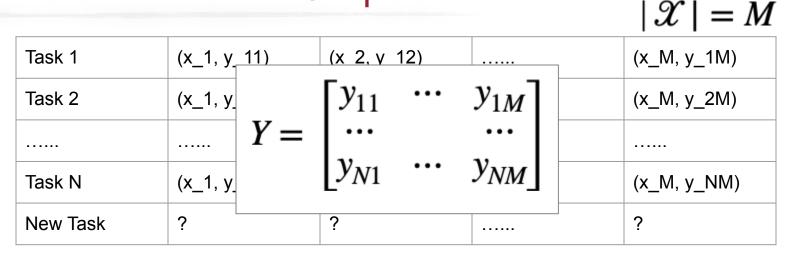
#### How to estimate the GP prior?



Unbiased prior estimator

$$\begin{split} \hat{\mu}(\mathcal{X}) &= \frac{1}{N} Y^T \mathbf{1}_N \sim \mathcal{N}(\mu(\mathcal{X}), \frac{1}{N} (k(\mathcal{X}) + \sigma^2 \mathbf{I})) \\ \hat{k}(\mathcal{X}) &= \frac{1}{N-1} (Y - \mathbf{1}_N \hat{\mu}(\mathcal{X})^T)^T (Y - \mathbf{1}_N \hat{\mu}(\mathcal{X})^T) \sim \mathcal{W}(\frac{1}{N-1} (k(\mathcal{X}) + \sigma^2 \mathbf{I}), N-1) \end{split}$$

#### How to estimate the GP posterior?



Unbiased posterior estimator

$$\hat{\mu}_{t}(x) = \hat{\mu}(x) + \hat{k}(x, \mathbf{x}_{t})\hat{k}(\mathbf{x}_{t}, \mathbf{x}_{t})^{-1}(\mathbf{y}_{t} - \hat{\mu}(\mathbf{x}_{t}))$$
$$\hat{\sigma}_{t}^{2}(x, x') = \frac{N - 1}{N - t - 1} \left(\hat{k}(x, x') - \hat{k}(x, \mathbf{x}_{t})\hat{k}(\mathbf{x}_{t}, \mathbf{x}_{t})^{-1}\hat{k}(\mathbf{x}_{t}, x')\right)$$

#### Regret bound without the knowledge of the GP prior

regret: 
$$r_T = \max_{x \in \mathcal{X}} f(x) - \max_{t \in [T]} f(x_t)$$

• functions are sampled from the same Gaussian process

Important assumptions:

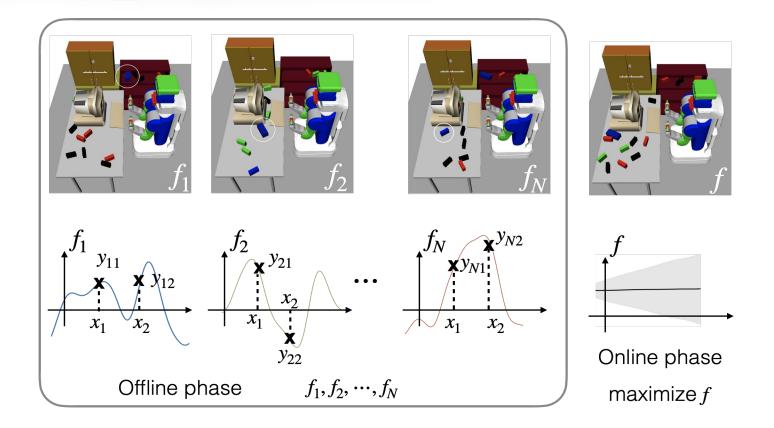
• enough number of functions in offline phase N > T + 20

Given T observations on the new function f, with probability  $1 - \delta$ ,

$$\begin{array}{ll} \text{regret} & r_T \leq O\left(\left(\sqrt{\frac{1}{N-T}} + C\right)\left(\sqrt{\frac{\log T}{T}} + \sigma^2}\right)\right) \rightarrow C\sigma \\ & \text{constant} \\ & \text{depending on } \delta \end{array} \right) \end{array} \\ \end{array} \\ \end{array}$$

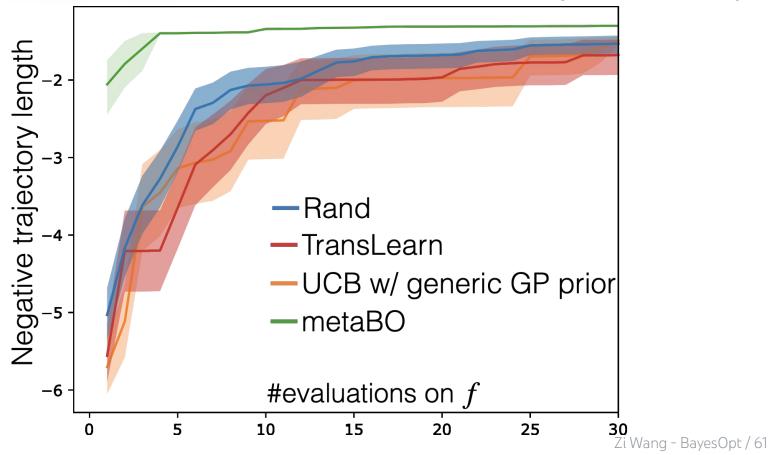
[Wang\*&Kim\*&Kaelbling, NeurIPS 2018]

#### Empirical results on block picking and placing



#### MetaBO gives better performance with fewer samples

[Wang et al., NeurIPS 2018]



Challenges, open problems and some attempts

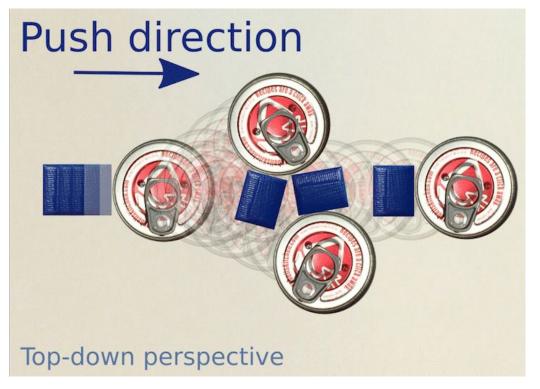
# **Applications in robotics**

Google Research

- Type of tasks:
- complex
- long-horizon
- stochastic
- fully-observable

#### Learning a pushing skill with multi-modal dynamics

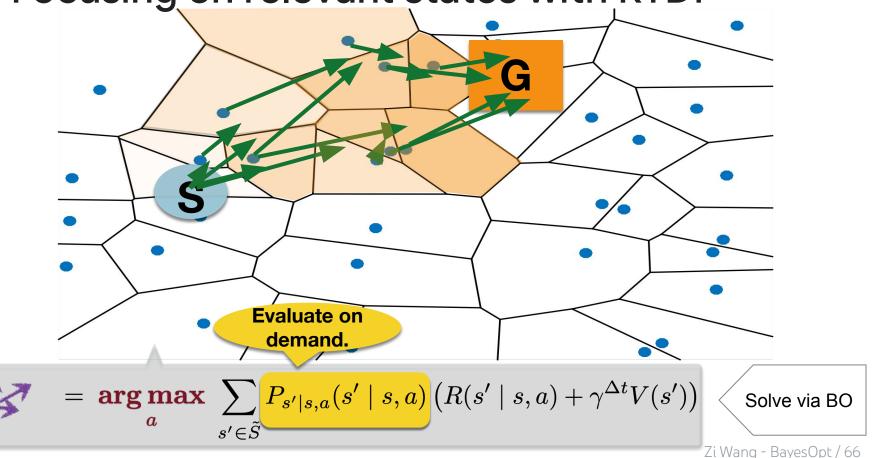




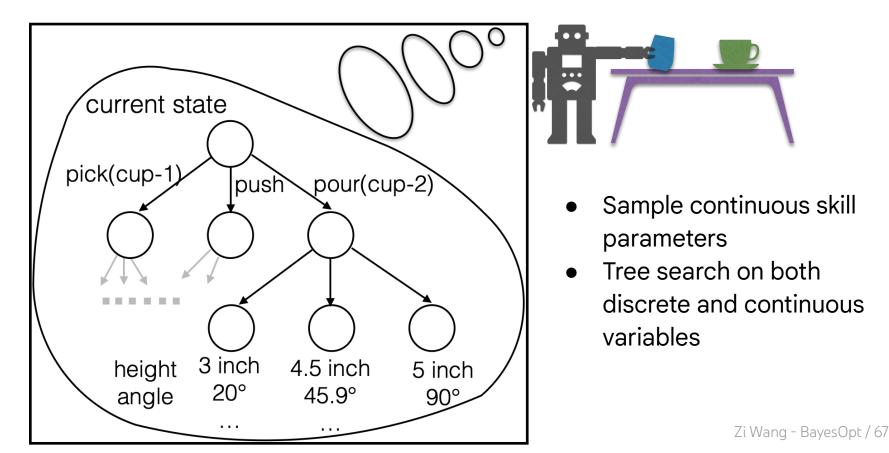
# Computing the action values is expensive G **Evaluate on** demand. $= \operatorname{arg\,max} \sum \frac{P_{s'|s,a}(s' \mid s,a)}{P_{s'|s,a}(s' \mid s,a)} \left( R(s' \mid s,a) + \gamma^{\Delta t} V(s') \right)$ Solve via BO a $s' \in \tilde{S}$

#### [Barto et al., 1995]

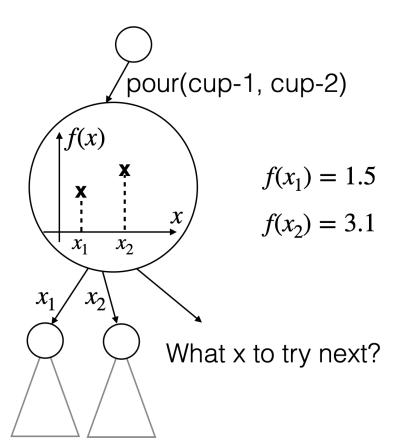
#### Focusing on relevant states with RTDP



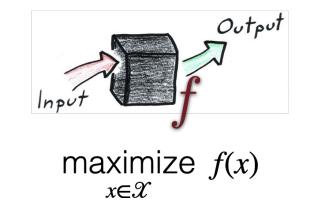
#### How to plan with learned skills?



#### How to sample skill parameters for the planner?



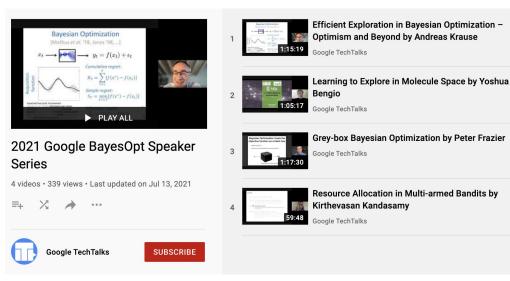
Treat the problem of sampling skill parameters as a black-box function optimization problem

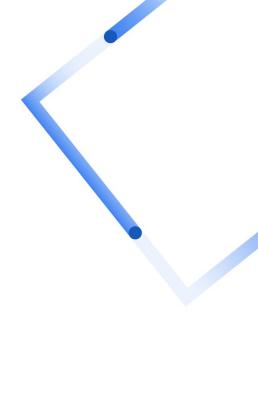


#### More talks on BayesOpt

#### 2021 Google BayesOpt Speaker Series

#### now publicly available at Google TechTalks channel on YouTube







# Questions?

Google Research