Priors in probabilistic numerics

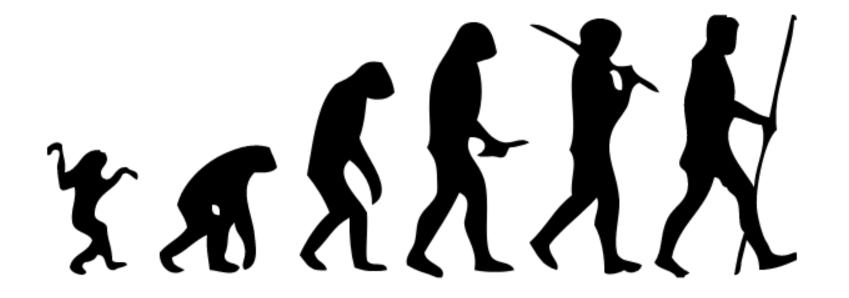
Zi Wang ProbNum @ Dagstuhl

Prior, engineering prior and data prior

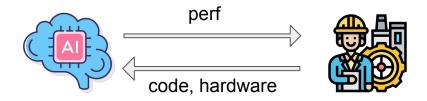
Where does the prior come from?

Priors in nature

Priors in nature through evolution



Priors in software: engineering prior

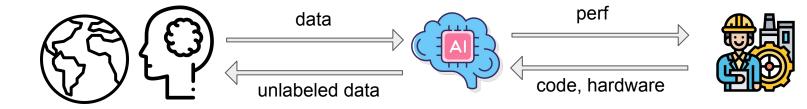


- engineering prior \approx (a sample of) the posterior of engineers
- posterior of engineers builds on human knowledge as a whole (education, books, journals, blogs + engineer experience with models)

Example of engineering prior: A*

- Very generalizable;
- Wide applications in robot planning and path planning in games;
- Algorithm entirely built-in by expert knowledge and abstraction of how humans solve path planning problem.

Software: engineering prior + data

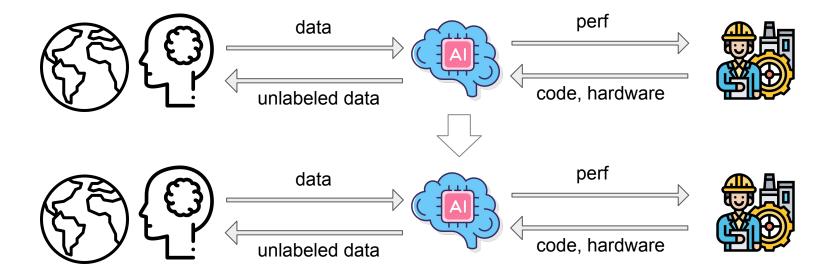


- engineering prior \approx (a sample of) the posterior of engineers
- data = a set of data points returned by the world or human annotators

[Wang, PhD Thesis 2020]

Example: robot learning with strong engineering priors

Data prior: priors in the evolution of software



• data prior ≈ pretraining

Obtaining a data prior through meta learning

Task 1	(x_11, y_11)	(x_12, y_12)	 (x_1M, y_1M)
Task 2	(x_21, y_21)	(x_22, y_22)	 (x_2M, y_2M)
Task N	(x_N1, y_N1)	(x_N2, y_N2)	 (x_NM, y_NM)
New Task	?	?	 ?

- The software to solve a new task corresponds to a new generation of models.
- A data prior can be obtained through all previous generations.

[Wang, PhD Thesis 2020] [Kim&Wang&Kaelbling&Lozano-Pérez, IJRR 2019] [Wang*&Kim*&Kaelbling, NeurIPS 2018]

Data prior example on BayesOpt

"HyperBO does not assume the knowledge of any GP parameters; instead, we learn the GP mean function, kernel function, and possible observation noise from data in the form of point sets, i.e. *i.i.d.* sets of correlated points."

 Automatic prior selection for meta Bayesian optimization with a case study on tuning deep neural network optimizers.

Joint work with G. E. Dahl, K. Swersky, C. Lee, Z. Mariet, Z. Nado, J. Gilmer, J. Snoek, Z.

Ghahramani. https://arxiv.org/abs/2109.08215

Assumption: evaluation functions on hyperparameters for all tasks are *i.i.d.* function samples from a GP

Task f_1	(x_11, y_11)	(x_12, y_12)	 (x_1M, y_1M)	
Task f_i	(x_i1, y_i1)	(x_i2, y_i2)	 (x_iM, y_iM)	D_{f_i}
Task f_N	(x_N1, y_N1)	(x_N2, y_N2)	 (x_NM, y_NM)	$D_N = \{D_{f_i}\}_{i=1}^N$
New Task	?	?	 ?	

$$f_i \sim \mathcal{GP}(\mu, k) \qquad f \sim \mathcal{GP}(\mu, k)$$

Google Research

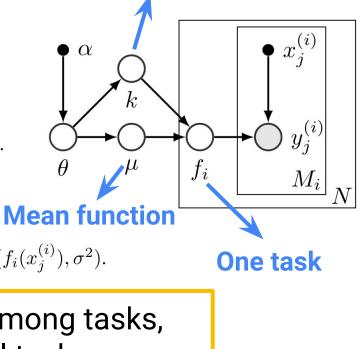
solve $\max_{x \in \mathfrak{X}} f(x)$

Hierarchical Gaussian process: a different viewpoint of multi-task GP Kernel

All tasks are IID samples from a GP

- Draw parameter θ from $p(\theta; \alpha)$.
- Draw mean function μ and kernel function k from $p(\mu, k \mid \theta)$.
- For each outer iteration i from 1 to N,
 - Draw a function f_i from $\mathcal{GP}(\mu, k)$.
 - For each inner loop iteration from 1 to M_i ,
 - * Given input $x_j^{(i)}$, we draw the observation $y_j^{(i)} \sim \mathcal{N}(f_i(x_j^{(i)}), \sigma^2)$.

Instead of learning correlations among tasks, we learn the GP that generated all tasks



HyperBO: a practical meta Bayesian optimization method

Algorithm 1 HyperBO with acquisition function $\alpha(\cdot)$.

1: function HYPERBO (f, D_N) Optimize data likelihood $\mathcal{GP}(\hat{\mu}, \hat{k}) \leftarrow \mathsf{TRAINGP}(D_N)$ 2: Optimize "distance" between sample mean/covariance 3: $D_f \leftarrow \emptyset$ estimates and predictions for $t = 1, \cdots, T$ do 4: $x_t \leftarrow \operatorname*{arg\,max}_{x \in \mathfrak{X}} \alpha \left(x; \mathcal{GP}(\hat{\mu}, \hat{k} \mid D_f) \right)$ 5: $y_t \leftarrow \text{OBSERVE}(f(x_t))$ 6: $D_f \leftarrow D_f \cup \{(x_t, y_t)\}$ 7: end for 8: 9: return D_f 10: end function

Optimize data likelihood

$$\log p(D_N \mid \mu, k, \sigma^2) = \sum_{i=1}^N \log p(D_{f_i} \mid \mu, k, \sigma^2)$$
$$= \sum_{i=1}^N \left(-\frac{1}{2} \bar{\boldsymbol{y}}_{(i)}^\top K^{-1} \bar{\boldsymbol{y}}_{(i)} - \frac{1}{2} \log |K| - \frac{M_i}{2} \log 2\pi \right)$$

$$ar{m{y}}_{(i)} = m{y}^{(i)} - \mu\left(m{x}^{(i)}
ight), K = k\left(m{x}^{(i)}
ight) + \sigma^2 m{I}, m{x}^{(i)} = [x_j^{(i)}]_{j=1}^{M_i} \text{ and } m{y}^{(i)} = [y_j^{(i)}]_{j=1}^{M_i}$$

Also possible to search over different mean/kernel architectures

Optimize distance between sample mean/covariance estimates and predictions (for same inputs across tasks)

Task 1	(x_1, y_11)	(x_2, y_12)	 (x_M, y_1M)
Task 2	(x_1, y_21)	(x_2, y_22)	 (x_M, y_2M)
Task N	(x_1, y_N1)	(x_2, y_N2)	 (x_M, y_NM)
New Task	?	?	 ?

$$\boldsymbol{y} = [\boldsymbol{y}_j]_{j=1}^M \in \mathbb{R}^{M \times N} \qquad \hat{\boldsymbol{\mu}} = \frac{1}{N} \boldsymbol{y} \boldsymbol{1}_N \in \mathbb{R}^M \\ \hat{\boldsymbol{K}} = \frac{1}{N} (\boldsymbol{y} - \hat{\boldsymbol{\mu}} \boldsymbol{1}_N^\top) (\boldsymbol{y} - \hat{\boldsymbol{\mu}} \boldsymbol{1}_N^\top)^\top \in \mathbb{R}^{M \times M}$$

$$\mathcal{D}_{\mathrm{KL}}(\hat{\boldsymbol{\mu}}, \hat{K}, \boldsymbol{\mu}(\boldsymbol{x}), \boldsymbol{k}(\boldsymbol{x}) + \boldsymbol{I}\boldsymbol{\sigma}^2) = \frac{1}{2} \left(\mathrm{tr}(K^{-1}\hat{K}) + (\boldsymbol{\mu}(\boldsymbol{x}) - \hat{\boldsymbol{\mu}})^\top K^{-1}(\boldsymbol{\mu}(\boldsymbol{x}) - \hat{\boldsymbol{\mu}}) + \ln\frac{|K|}{|\hat{K}|} - M \right)$$

Preliminary Results

Reduced complexity in #Tasks

O(M^3 N)

Theoretical results: near-zero regret with unknown GP priors

W

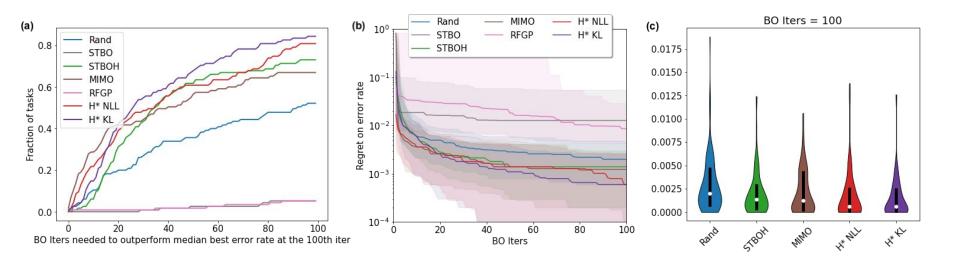
Proposition 1. For any $M, d, N \in \mathbb{Z}^+, x \in \mathbb{R}^{M \times d}, \mu \in \mathbb{R}^M, V \in \mathbb{R}^{N \times M}$ and $K = V^\top V$, there exists a Gaussian process $\mathcal{GP}(\hat{\mu}, \hat{k})$ such that $\mathcal{D}_{EUC}(\hat{\mu}(\boldsymbol{x}), \hat{k}(\boldsymbol{x}), \boldsymbol{\mu}, K) \equiv 0.$

Theorem 2. Let $N \ge 4 \log \frac{6}{\delta} + T + 2$. With probability at least $1 - \delta$, simple regret in T iterations of HyperBO with special cases of either GP-UCB or PI satisfies

$$R_T < O\left(\sqrt{\frac{1}{N-T}} + (\log\frac{1}{\delta})^{\frac{1}{2}}\right) O(\rho_T/T + \sigma), \tag{1}$$

where $\rho_T = \max_{A \subset \mathfrak{X}, |A|=T} \frac{1}{2} \log |\mathbf{I} + \sigma^{-2}k(A)|.$

Hyper BO achieves better empirical results on offline optimizer hyperparameter tuning tasks



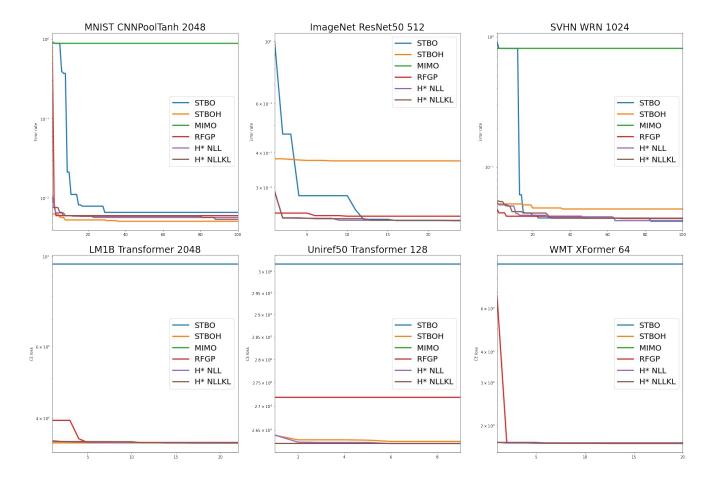
hyperparameter tuning dataset generated by github.com/google/init2winit

Best validation error rates for each task in the offline leave-one-out experiments (after 100 BO iterations)

	Rand	STBOH	MIMO	MAF	H* NLL	H* KL
WMT XFormer 64	34.27 ± 0.16	34.15 ± 0.15	34.40 ± 0.13	34.09 ± 0.09	33.91 ± 0.01	33.97 ± 0.02
Uniref50 Transformer 128	79.06 ± 0.04	78.92 ± 0.12	79.17 ± 0.13	79.34 ± 0.27	78.71 ± 0.06	78.64 ± 0.00
LM1B Transformer 2048	61.96 ± 0.03	61.95 ± 0.04	61.96 ± 0.05	62.02 ± 0.10	61.81 ± 0.01	61.81 ± 0.01
SVHN WRN 1024	3.99 ± 0.04	4.05 ± 0.10	3.83 ± 0.04	4.10 ± 0.09	4.10 ± 0.02	4.08 ± 0.01
SVHN WRN 256	3.71 ± 0.01	3.72 ± 0.02	3.65 ± 0.01	3.69 ± 0.03	3.78 ± 0.01	3.72 ± 0.03
ImageNet ResNet50 256	23.03 ± 0.07	22.66 ± 0.07	22.73 ± 0.07	26.44 ± 1.98	22.53 ± 0.00	22.58 ± 0.04
ImageNet ResNet50 512	23.02 ± 0.11	22.74 ± 0.05	23.01 ± 0.05	25.46 ± 1.41	22.65 ± 0.02	22.79 ± 0.03
MNIST CNNPoolTanh 2048	0.55 ± 0.01	0.53 ± 0.01	0.53 ± 0.01	0.52 ± 0.01	0.59 ± 0.02	0.54 ± 0.00
MNIST CNNPoolTanh 256	0.51 ± 0.01	0.48 ± 0.01	0.47 ± 0.00	0.47 ± 0.01	0.46 ± 0.01	0.47 ± 0.01
MNIST CNNPoolReLU 2048	0.69 ± 0.01	0.73 ± 0.02	0.67 ± 0.02	0.68 ± 0.01	0.64 ± 0.00	0.70 ± 0.03
MNIST CNNPoolReLU 256	0.51 ± 0.01	0.55 ± 0.03	0.50 ± 0.01	0.51 ± 0.01	0.49 ± 0.00	0.49 ± 0.00
MNIST CNNReLU 2048	1.14 ± 0.03	1.20 ± 0.09	1.10 ± 0.01	1.17 ± 0.02	1.06 ± 0.00	1.11 ± 0.02
MNIST CNNReLU 256	1.09 ± 0.02	1.06 ± 0.01	1.08 ± 0.02	1.07 ± 0.02	1.03 ± 0.00	1.04 ± 0.01
Fashion CNNPoolTanh 2048	7.14 ± 0.06	7.10 ± 0.05	7.01 ± 0.04	7.12 ± 0.04	7.00 ± 0.04	7.02 ± 0.07
Fashion CNNPoolTanh 256	6.51 ± 0.03	6.67 ± 0.18	6.40 ± 0.05	6.47 ± 0.03	6.40 ± 0.04	6.34 ± 0.04
Fashion CNNPoolReLU 2048	7.47 ± 0.02	7.48 ± 0.04	7.54 ± 0.06	7.63 ± 0.04	7.47 ± 0.03	7.47 ± 0.02
Fashion CNNPoolReLU 256	6.78 ± 0.04	6.74 ± 0.01	7.03 ± 0.07	6.84 ± 0.05	6.74 ± 0.03	6.81 ± 0.05
Fashion CNNReLU 2048	7.70 ± 0.03	7.47 ± 0.09	7.60 ± 0.04	40.40 ± 17.80	7.54 ± 0.01	7.57 ± 0.02
Fashion CNNReLU 256	7.70 ± 0.04	7.46 ± 0.11	7.84 ± 0.06	24.13 ± 14.54	7.29 ± 0.05	7.25 ± 0.05
CIFAR100 WRN 2048	21.28 ± 0.27	20.78 ± 0.19	21.75 ± 0.15	50.70 ± 15.44	21.22 ± 0.23	20.82 ± 0.19
CIFAR100 WRN 256	19.17 ± 0.19	19.02 ± 0.03	19.12 ± 0.04	19.84 ± 0.13	19.00 ± 0.00	19.04 ± 0.05
CIFAR10 WRN 2048	3.73 ± 0.05	3.43 ± 0.07	3.46 ± 0.05	3.40 ± 0.06	3.55 ± 0.10	3.43 ± 0.05
CIFAR10 WRN 256	2.84 ± 0.04	2.88 ± 0.06	2.89 ± 0.06	3.04 ± 0.05	2.82 ± 0.03	2.74 ± 0.01
25					(

HyperBO w/ different objectives

Online experiment results: HyperBO is most stable



Thank you!

zi-wang.com